In an era of high penetration of renewable energy, accurate photovoltaic (PV) power forecasting is crucial for balancing and scheduling power systems. However, PV power output has uncertainty since it depends on stochastic weather conditions. In this paper, we propose a novel short-term PV forecasting technique using Delaunay triangulation, of which the vertices are three weather stations that enclose a target PV site. By leveraging a Transformer encoder and gated recurrent unit (GRU), the proposed TransGRU model is robust against weather forecast error as it learns feature representation from weather data. We construct a framework based on Delaunay triangulation and TransGRU and verify that the proposed framework shows a 7–15% improvement compared to other state-of-the-art methods in terms of the normalized mean absolute error. Moreover, we investigate the effect of PV aggregation for virtual power plants where errors can be compensated across PV sites. Our framework demonstrates 41–60% improvement when PV sites are aggregated and achieves as low as 3–4% of forecasting error on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.