Residence time distributions (RTD) are often described on the basis of the dispersion or the tanks in series models, whereby the fitting is not always good. In addition, the underlying ideas of these models only roughly characterize the real existing processes. Two semi-empirical equations are presented based on characteristic parameters (mean, minimum, maximum residence time) and on an empirical exponent to permit better fitting. The determination of the parameters and their influence on the RTD are discussed. The usefulness of the models is shown in this first part for single-phase systems and for the continuous phase of multiphase systems using data from literature for laminar and turbulent flows in different apparatuses. A comparison with the results of other models is also done.
Modeling of the Laminar Flow in the Entrance Region of Tubes and Ducts and its Impact on the Residence Time DistributionA one-range and a two-range model for the laminar velocity distribution in the entrance region of tubes and ducts are presented. These allow the calculation of the residence time distribution under the impact of the flow development in the hydrodynamic entrance region. For the dispersion-free case, an analytical solution is given. A cell model with place-changing probability (ZEMP) is applied for the consideration of dispersion. This approach allows the fast quantification of the influence of different parameters on the residence time distribution for relatively short pipes and ducts. The numerical results are compared with earlier presented results of semi-empirical models.
Verweilzeitverteilungen werden häufig zur Charakterisierung verfahrenstechnischer und speziell reaktionstechnischer Prozesse herangezogen. In dispersen Systemen existiert für jede Phase eine Verweilzeitverteilung, die sich stark voneinander unterscheiden können. Das im Teil 1 vorgestellte Modell, in das charakteristische Parameter der Verweilzeitverteilungen (mittlere, minimale, maximale Verweilzeit) und ein frei wählbarer Exponent eingehen, erweist sich auch für die Nachbildung des Verweilzeitverhaltens der dispersen Phase als geeignet. Der Nachweis wird anhand der Nachrechnung veröffentlichter Verweilzeitverteilungskurven erbracht, wobei verschiedene Apparatetypen berücksichtigt werden. Wegen des bei der dispersen gegenüber der kontinuierlichen Phase kürzeren Nachlaufs ist in manchen Fällen die Freigabe eines weiteren in Teil 1 noch konstant gehaltenen Exponenten sinnvoll. Dadurch gelingt es auch, eine Reihe theoretischer Grenzfälle für diffusionsfreie Systeme mit diesem Gleichungstyp zu erfassen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.