Objectives Many deep learning-based predictive models evaluate the waveforms of electrocardiograms (ECGs). Because deep learning-based models are data-driven, large and labeled biosignal datasets are required. Most individual researchers find it difficult to collect adequate training data. We suggest that transfer learning can be used to solve this problem and increase the effectiveness of biosignal analysis. Methods We applied the weights of a pretrained model to another model that performed a different task (i.e., transfer learning). We used 2,648,100 unlabeled 8.2-second-long samples of ECG II data to pretrain a convolutional autoencoder (CAE) and employed the CAE to classify 12 ECG rhythms within a dataset, which had 10,646 10-second-long 12-lead ECGs with 11 rhythm labels. We split the datasets into training and test datasets in an 8:2 ratio. To confirm that transfer learning was effective, we evaluated the performance of the classifier after the proposed transfer learning, random initialization, and two-dimensional transfer learning as the size of the training dataset was reduced. All experiments were repeated 10 times using a bootstrapping method. The CAE performance was evaluated by calculating the mean squared errors (MSEs) and that of the ECG rhythm classifier by deriving F1-scores. Results The MSE of the CAE was 626.583. The mean F1-scores of the classifiers after bootstrapping of 100%, 50%, and 25% of the training dataset were 0.857, 0.843, and 0.835, respectively, when the proposed transfer learning was applied and 0.843, 0.831, and 0.543, respectively, after random initialization was applied. Conclusions Transfer learning effectively overcomes the data shortages that can compromise ECG domain analysis by deep learning.
Background Data collected by an actigraphy device worn on the wrist or waist can provide objective measurements for studies related to physical activity; however, some data may contain intervals where values are missing. In previous studies, statistical methods have been applied to impute missing values on the basis of statistical assumptions. Deep learning algorithms, however, can learn features from the data without any such assumptions and may outperform previous approaches in imputation tasks. Objective The aim of this study was to impute missing values in data using a deep learning approach. Methods To develop an imputation model for missing values in accelerometer-based actigraphy data, a denoising convolutional autoencoder was adopted. We trained and tested our deep learning–based imputation model with the National Health and Nutrition Examination Survey data set and validated it with the external Korea National Health and Nutrition Examination Survey and the Korean Chronic Cerebrovascular Disease Oriented Biobank data sets which consist of daily records measuring activity counts. The partial root mean square error and partial mean absolute error of the imputed intervals (partial RMSE and partial MAE, respectively) were calculated using our deep learning–based imputation model (zero-inflated denoising convolutional autoencoder) as well as using other approaches (mean imputation, zero-inflated Poisson regression, and Bayesian regression). Results The zero-inflated denoising convolutional autoencoder exhibited a partial RMSE of 839.3 counts and partial MAE of 431.1 counts, whereas mean imputation achieved a partial RMSE of 1053.2 counts and partial MAE of 545.4 counts, the zero-inflated Poisson regression model achieved a partial RMSE of 1255.6 counts and partial MAE of 508.6 counts, and Bayesian regression achieved a partial RMSE of 924.5 counts and partial MAE of 605.8 counts. Conclusions Our deep learning–based imputation model performed better than the other methods when imputing missing values in actigraphy data.
Most existing electrocardiogram (ECG) feature extraction methods rely on rule-based approaches. It is difficult to manually define all ECG features. We propose an unsupervised feature learning method using a convolutional variational autoencoder (CVAE) that can extract ECG features with unlabeled data. We used 596,000 ECG samples from 1,278 patients archived in biosignal databases from intensive care units to train the CVAE. Three external datasets were used for feature validation using two approaches. First, we explored the features without an additional training process. Clustering, latent space exploration, and anomaly detection were conducted. We confirmed that CVAE features reflected the various types of ECG rhythms. Second, we applied CVAE features to new tasks as input data and CVAE weights to weight initialization for different models for transfer learning for the classification of 12 types of arrhythmias. The f1-score for arrhythmia classification with extreme gradient boosting was 0.86 using CVAE features only. The f1-score of the model in which weights were initialized with the CVAE encoder was 5% better than that obtained with random initialization. Unsupervised feature learning with CVAE can extract the characteristics of various types of ECGs and can be an alternative to the feature extraction method for ECGs.
Background When using a smartwatch to obtain electrocardiogram (ECG) signals from multiple leads, the device has to be placed on different parts of the body sequentially. The ECG signals measured from different leads are asynchronous. Artificial intelligence (AI) models for asynchronous ECG signals have barely been explored. Objective We aimed to develop an AI model for detecting acute myocardial infarction using asynchronous ECGs and compare its performance with that of the automatic ECG interpretations provided by a commercial ECG analysis software. We sought to evaluate the feasibility of implementing multiple lead–based AI-enabled ECG algorithms on smartwatches. Moreover, we aimed to determine the optimal number of leads for sufficient diagnostic power. Methods We extracted ECGs recorded within 24 hours from each visit to the emergency room of Ajou University Medical Center between June 1994 and January 2018 from patients aged 20 years or older. The ECGs were labeled on the basis of whether a diagnostic code corresponding to acute myocardial infarction was entered. We derived asynchronous ECG lead sets from standard 12-lead ECG reports and simulated a situation similar to the sequential recording of ECG leads via smartwatches. We constructed an AI model based on residual networks and self-attention mechanisms by randomly masking each lead channel during the training phase and then testing the model using various targeting lead sets with the remaining lead channels masked. Results The performance of lead sets with 3 or more leads compared favorably with that of the automatic ECG interpretations provided by a commercial ECG analysis software, with 8.1%-13.9% gain in sensitivity when the specificity was matched. Our results indicate that multiple lead-based AI-enabled ECG algorithms can be implemented on smartwatches. Model performance generally increased as the number of leads increased (12-lead sets: area under the receiver operating characteristic curve [AUROC] 0.880; 4-lead sets: AUROC 0.858, SD 0.008; 3-lead sets: AUROC 0.845, SD 0.011; 2-lead sets: AUROC 0.813, SD 0.018; single-lead sets: AUROC 0.768, SD 0.001). Considering the short amount of time needed to measure additional leads, measuring at least 3 leads—ideally more than 4 leads—is necessary for minimizing the risk of failing to detect acute myocardial infarction occurring in a certain spatial location or direction. Conclusions By developing an AI model for detecting acute myocardial infarction with asynchronous ECG lead sets, we demonstrated the feasibility of multiple lead-based AI-enabled ECG algorithms on smartwatches for automated diagnosis of cardiac disorders. We also demonstrated the necessity of measuring at least 3 leads for accurate detection. Our results can be used as reference for the development of other AI models using sequentially measured asynchronous ECG leads via smartwatches for detecting various cardiac disorders.
ObjectivesElectrocardiogram (ECG) data are important for the study of cardiovascular disease and adverse drug reactions. Although the development of analytical techniques such as machine learning has improved our ability to extract useful information from ECGs, there is a lack of easily available ECG data for research purposes. We previously published an article on a database of ECG parameters and related clinical data (ECG-ViEW), which we have now updated with additional 12-lead waveform information.MethodsAll ECGs stored in portable document format (PDF) were collected from a tertiary teaching hospital in Korea over a 23-year study period. We developed software which can extract all ECG parameters and waveform information from the ECG reports in PDF format and stored it in a database (meta data) and a text file (raw waveform).ResultsOur database includes all parameters (ventricular rate, PR interval, QRS duration, QT/QTc interval, P-R-T axes, and interpretations) and 12-lead waveforms (for leads I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6) from 1,039,550 ECGs (from 447,445 patients). Demographics, drug exposure data, diagnosis history, and laboratory test results (serum calcium, magnesium, and potassium levels) were also extracted from electronic medical records and linked to the ECG information.ConclusionsElectrocardiogram information that includes 12 lead waveforms was extracted and transformed into a form that can be analyzed. The description and programming codes in this case report could be a reference for other researchers to build ECG databases using their own local ECG repository.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.