The p53 protein arrests the cell cycle at the G 1 phase when stabilized by the interaction between ribosomal proteins and HDM2 under growth-inhibitory conditions. Meanwhile, p53, when translocated to the mitochondria in response to cell death signals, induces apoptosis via transcription-independent mechanisms. In this report, we demonstrate that the mitochondrial ribosomal protein L41 (MRPL41) enhances p53 stability and contributes to p53-induced apoptosis in response to growth-inhibitory conditions such as actinomycin D treatment and serum starvation. An analysis of MRPL41 expression in paired normal and tumor tissues revealed lower expression in tumor tissue. Ectopic MRPL41 expression resulted in inhibition of the growth of cancer cells in tissue culture and tumor growth in nude mice. We discovered that MRPL41 protein is localized in the mitochondria, stabilizes the p53 protein, and enhances its translocation to the mitochondria, thereby inducing apoptosis. Interestingly, in the absence of p53, MRPL41 stabilizes the p27 Kip1 protein and arrests the cell cycle at the G 1 phase. These results suggest that MRPL41 plays an important role in p53-induced mitochondrion-dependent apoptosis and MRPL41 exerts a tumor-suppressive effect in association with p53 and p27Kip1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.