Chicken meat is a popular food commodity that is widely consumed worldwide. However, the shelf-life or quality maintenance of chicken meat is a major concern for industries because of spoilage by microbial growth. The aim of this study was to evaluate the effects of chitosan and duck fat-based emulsion coatings on the quality characteristics and microbial stability of chicken meat during refrigerated storage. The coated chicken meat samples were as follows: control (non-coated), DFC0 (coated with duck fat), DFC0.5 (coated with duck fat and 0.5% chitosan), DFC1 (coated with duck fat and 1% chitosan), DFC2 (coated with duck fat and 2% chitosan), and SOC2 (coated with soybean oil and 2% chitosan). The results showed that the apparent viscosity and coating rate were higher in DFC2 than in other groups. Physicochemical parameters (pH, color, and Warner–Bratzler shear force) were better in DFC2 than those in other groups during 15 days of storage. Moreover, DFC2 delayed lipid oxidation, protein deterioration, and growth of microorganisms during storage. These data suggest that chitosan-supplemented duck fat-based emulsion coating could be used to maintain the quality of raw chicken meat during refrigerated storage.
Emulsion gel has been used to replace animal fats in meat products. Konjac is a widely used gelling agent; however, its low emulsion stability limits its use in meat products. This study aimed to examine the quality characteristics of β-cyclodextrin (CD)-supplemented konjac-based emulsion gel (KEG) (CD-KEG) and its application as a fat substitute in emulsion-type sausages. The supplementation of CD increased hydrogen bonds and hydrophobic interactions with konjac and oil in the gels, respectively. Additionally, CD increased the structural complexity and strength of KEG. Since adding more than 6% of CD to KEG did not increase the gel strength, 6% CD-added KEG was adopted to substitute for pork backfat in manufacturing low-fat emulsion-type sausages. The following formulations of the sausages were prepared: pork backfat 20% (PF20); pork backfat 10% + KEG 10% (KEG10); KEG 20% (KEG20); pork backfat 10% + CD-KEG 10% (CD-KEG10); CD-KEG 20% (CD-KEG20); and pork backfat 5% (PF5). The CD-KEG20 formulation exhibited higher viscosity and viscoelasticity than KEG20, which suggested that CD improves the rheological properties and the thermal stability of meat batter. Additionally, CD-KEG20 showed similar emulsion stability, cooking yield and texture parameters compared with PF20. Therefore, 6% CD-added KEG is a suitable fat substitute for preparing low-fat emulsion-type sausages.
Objective: Sous-vide cooking offers several advantages for poultry meat, including enhanced tenderness, reduced cooking loss, and improved product yield. However, in duck meat, there are challenges associated with using the sous-vide method. The prolonged cooking time at low temperatures can lead to unstable microbial and oxidative stabilities. Thus, we aimed to assess how varying sous-vide cooking temperatures and durations affect the physicochemical and microbial characteristics of duck breast meat, with the goal of identifying an optimal cooking condition.Methods: Duck breast meat (<i>Anas platyrhynchos</i>) aged 42 days and with an average weight of 1,400±50 g, underwent cooking under various conditions (ranging from 50°C to 80°C) for either 60 or 180 min. Then, physicochemical, microbial, and microstructural properties of the cooked duck breast meat were assessed.Results: Different cooking conditions affected the quality attributes of the meat. The cooking loss, lightness, yellowness, Hue angle, whiteness, and thiobarbituric acid reactive substance (TBARS) values of the duck breast meat increased with the increase in cooking temperature and time. In contrast, the redness and chroma values decreased with the increase in cooking temperature and time. Cooking of samples higher than 60°C increased the volatile basic nitrogen contents and TBARS. Microbial analysis revealed the presence of <i>Escherichia coli</i> and Coliform only in the samples cooked at 50°C and raw meat. Cooking at lower temperature and shorter time increased the tenderness of the meat. Microstructure analysis showed that the contraction of myofibrils and meat density increased upon increasing the cooking temperature and time.Conclusion: Our data indicate that the optimal sous-vide method for duck breast meat was cooking at 60°C for 60 min. This temperature and time conditions showed good texture properties and microbial stability, and low level of TBARS of the duck breast meat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.