ObjectivesAlthough mercury (Hg) exposure is known to be neurotoxic in humans, its effects on liver function have been less often reported. The aim of this study was to investigate whether total Hg exposure in Korean adults was associated with elevated serum levels of the liver enzymes aspartate aminotransferase (AST), alanine transaminase (ALT), and gamma-glutamyltransferase (GGT).MethodsWe repeatedly examined the levels of total Hg and liver enzymes in the blood of 508 adults during 2010-2011 and 2014-2015. Cross-sectional associations between levels of blood Hg and liver enzymes were analyzed using a generalized linear model, and nonlinear relationships were analyzed using a generalized additive mixed model. Generalized estimating equations were applied to examine longitudinal associations, considering the correlations of individuals measured repeatedly.ResultsGGT increased by 11.0% (95% confidence interval [CI], 4.5 to 18.0%) in women and 8.1% (95% CI, -0.5 to 17.4%) in men per doubling of Hg levels, but AST and ALT were not significantly associated with Hg in either men or women. In women who drank more than 2 or 3 times per week, AST, ALT, and GGT levels increased by 10.6% (95% CI, 4.2 to 17.5%), 7.7% (95% CI, 1.1 to 14.7%), and 37.5% (95% CI,15.2 to 64.3%) per doubling of Hg levels, respectively, showing an interaction between blood Hg levels and drinking.ConclusionsHg exposure was associated with an elevated serum concentration of GGT. Especially in women who were frequent drinkers, AST, ALT, and GGT showed a significant increase, with a significant synergistic effect of Hg and alcohol consumption.
Recently several studies reported that the renal toxicity of lead (Pb) and cadmium (Cd) may exist in even a low level exposure. In terms of the deterioration of tubular function, it affects the loss of divalent metals and leads to other complications, so renal tubular effect of heavy metals should be well managed. Considering the exposure to heavy metals in reality, it is hard to find the case that human is exposed to only one heavy metal. We designed a cross-sectional study using Korean Research Project on the Integrated Exposure Assessment (KRIEFS) data to investigate the renal effects of multiple metal exposure in general population. We used blood Pb and urinary Cd as exposure measures, and urinary N-acetyl-β-D-glucosaminidase (NAG) and β2-microglobulin (β2-MG) as renal tubular impairment outcome. We conducted linear regression to identify the association between each heavy metal and urinary NAG and β2-MG. And then, we conducted linear regression including the interaction term. Of 1953 adults in KRIEFS (2010~2011), the geometric mean of blood Pb and urinary Cd concentration was 2.21 μg/dL (geometric SD = 1.49 μg/dL) and 1.08 μg/g cr (geometric SD = 1.98 μg/g cr), respectively. In urinary Cd, the strength of the association was also high after adjusting (urinary NAG: β = 0.44, p < 0.001; urinary β2-MG: β = 0.13, p = 0.002). Finally, we identified the positive interactions for the two renal biomarkers. The interaction effect of the two heavy metals of β2-MG was greater than that of NAG. It is very important in public health perspective if the low level exposure to multiple heavy metals has an interaction effect on kidney. More epidemiological studies for the interaction and toxicological studies on the mechanism are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.