User‐interactive electronic skin (e‐skin) with a distinguishable output has enormous potential for human–machine interfaces and healthcare applications. Despite advances in user‐interactive e‐skins, advances in visual user‐interactive therapeutic e‐skins remain rare. Here, a user‐interactive thermotherapeutic device is reported that is fabricated by combining thermochromic composites and stretchable strain sensors consisting of strain‐responsive silver nanowire networks on surface energy‐patterned microwrinkles. Both the color and heat of the device are easily controlled through electrical resistance variation induced by applied mechanical strain. The resulting monolithic device exhibits substantial changes in optical reflectance and temperature with durability, rapid response, high stretchability, and linear sensitivity. The approach enables a low‐expertise route to fabricating dynamic interactive thermotherapeutic e‐skins that can be used to effectively rehabilitate injured connective tissues as well as to prevent skin burns by simultaneously accommodating stretching, providing heat, and exhibiting a color change.
Human skin plays a critical role in a person communicating with his or her environment through diverse activities such as touching or deforming an object. Various electronic skin (E‐skin) devices have been developed that show functional or geometrical superiority to human skin. However, research into stretchable E‐skin that can simultaneously distinguish materials and textures has not been established yet. Here, the first approach to achieving a stretchable multimodal device is reported, that operates on the basis of various electrical properties of piezoelectricity, triboelectricity, and piezoresistivity and that exceeds the capabilities of human tactile perception. The prepared E‐skin is composed of a wrinkle‐patterned silicon elastomer, hybrid nanomaterials of silver nanowires and zinc oxide nanowires, and a thin elastomeric dielectric layer covering the hybrid nanomaterials, where the dielectric layer exhibits high surface roughness mimicking human fingerprints. This versatile device can identify and distinguish not only mechanical stress from a single stimulus such as pressure, tensile strain, or vibration but also that from a combination of multiple stimuli. With simultaneous sensing and analysis of the integrated stimuli, the approach enables material discrimination and texture recognition for a biomimetic prosthesis when the multifunctional E‐skin is applied to a robotic hand.
In article number 2002606, Seung Goo Lee, Kilwon Cho, and co‐workers demonstrate a finger padinspired multimodal mechanoelectric sensor for material discrimination and texture recognition. By integrating various electrical working mechanisms of piezoelectric, triboelectric, and piezoresistive, the sensor can identify and distinguish the external stresses from a single stimulus to a combination of multiple stimuli, enabling a potential application of artificial sensory systems for biomimetic prosthesis and robotic skins.
In article number 2001184, Seung Goo Lee, Kilwon Cho, and co‐workers demonstrate a user‐interactive thermotherapeutic electronic skin by integrating thermochromic composite and a stretchable strain sensor. Both heat and color of the device are easily controlled by external mechanical strain. This device exhibits a potential application in effective connective tissue injury rehabilitation, while avoiding skin burns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.