In this article, we report the synthesis of "solid solution" and "core-shell" types of well-defined Co--Pt nanoalloys smaller than 10 nm. The formation of these alloys is driven by redox transmetalation reactions between the reagents without the need for any additional reductants. Also the reaction proceeds selectively as long as the redox potential between the two metals is favorable. The reaction between Co(2)(CO)(8) and Pt(hfac)(2) (hfac = hexafluoroacetylacetonate) results in the formation of "solid solution" type alloys such as CoPt(3) nanoparticles. On the other hand, the reaction of Co nanoparticles with Pt(hfac)(2) in solution results in "Co(core)Pt(shell)" type nanoalloys. Nanoparticles synthesized by both reactions are moderately monodispersed (sigma < 10%) without any further size selection processes. The composition of the alloys can also be tuned by adjusting the ratio of reactants. The magnetic and structural properties of the obtained nanoparticles and reaction byproducts are characterized by TEM, SQUID, UV/vis, IR, EDAX, and XRD.
In this paper we construct a simply connected, minimal, complex surface of general type with pg = 0 and K 2 = 2 using a rational blow-down surgery and a Q-Gorenstein smoothing theory.In this section we develop a theory of Q-Gorenstein smoothing for projective surfaces with special quotient singularities, which is a key technical ingredient in our result.Definition. Let X be a normal projective surface with quotient singularities. Let X → ∆ (or X /∆) be a flat family of projective surfaces over a small disk ∆. The one-parameter family of surfaces X → ∆ is called a Q-Gorenstein smoothing of X if it satisfies the following three conditions; (i) the general fiber X t is a smooth projective surface,
Many vision tasks such as scene segmentation, or the recognition of materials within a scene, become considerably easier when it is possible to measure the spectral reflectance of scene surfaces. In this paper, we present an efficient and robust approach for recovering spectral reflectance in a scene that combines the advantages of using multiple spectral sources and a multispectral camera. We have implemented a system based on this approach using a cluster of light sources with different spectra to illuminate the scene and a conventional RGB camera to acquire images. Rather than sequentially activating the sources, we have developed a novel technique to determine the optimal multiplexing sequence of spectral sources so as to minimize the number of acquired images. We use our recovered spectral measurements to recover the continuous spectral reflectance for each scene point by using a linear model for spectral reflectance. Our imaging system can produce multispectral videos of scenes at 30fps. We demonstrate the effectiveness of our system through extensive evaluation. As a demonstration, we present the results of applying data recovered by our system to material segmentation and spectral relighting.
Docosahexaenoic acid (DHA) has been reported to induce tumor cell death by apoptosis. However, little is known about the effects of DHA on autophagy, another complex well-programmed process characterized by the sequestration of cytoplasmic material within autophagosomes. Here, we show that DHA increased both the level of microtubule-associated protein light-chain 3 and the number of autophagic vacuoles without impairing autophagic vesicle turnover, indicating that DHA induces not only apoptosis but also autophagy. We also observed that DHA-induced autophagy was accompanied by p53 loss. Inhibition of p53 increased DHA-induced autophagy and prevention of p53 degradation significantly led to the attenuation of DHA-induced autophagy, suggesting that DHA-induced autophagy is mediated by p53. Further experiments showed that the mechanism of DHA-induced autophagy associated with p53 attenuation involved an increase in the active form of AMP-activated protein kinase and a decrease in the activity of mammalian target of rapamycin. In addition, compelling evidence for the interplay between autophagy and apoptosis induced by DHA is supported by the findings that autophagy inhibition suppressed apoptosis and further autophagy induction enhanced apoptosis in response to DHA treatment. Overall, our results demonstrate that autophagy contributes to the cytotoxicity of DHA in cancer cells harboring wild-type p53.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.