The selective detection of the anion pyrophosphate (PPi) is a major research focus. PPi is a biologically important target because it is the product of ATP hydrolysis under cellular conditions, and because it is involved in DNA replication catalyzed by DNA polymerase, its detection is being investigated as a real-time DNA sequencing method. In addition, within the past decade, the ability to detect PPi has become important in cancer research. In general, the sensing of anions in aqueous solution requires a strong affinity for anions in water as well as the ability to convert anion recognition into a fluorescent or colorimetric signal. Among the variety of methods for detecting PPi, fluorescent chemosensors and colorimetric sensors for PPi have attracted considerable attention during the past 10 years. Compared with the recognition of metal ions, it is much more challenging to selectively recognize anions in an aqueous system due to the strong hydration effects of anions. Consequently, the design of PPi sensors requires the following: an understanding of the molecular recognition between PPi and the binding sites, the desired solubility in aqueous solutions, the communicating and signaling mechanism, and most importantly, selectivity for PPi over other anions such as AMP and ADP, and particularly phosphate and ATP. This Account classifies chemosensors for PPi according to topological and structural characteristics. Types of chemosensors investigated and reported in this study include those that contain metal ion complexes, metal complexes combined with excimers, those that function with a displacement approach, and those based on hydrogen-bonding interaction. Thus far, the utilization of a metal ion complex as a binding site for PPi has been the most successful strategy. The strong binding affinity between metal ions and PPi allows the detection of PPi in a 100% aqueous solution. We have demonstrated that carefully designed receptors can distinguish between PPi and ATP based on their different total anionic charge densities. We have also demonstrated that a PPi metal ion complex sensor has a bioanalytical application. This sensor can be used in a simple and quick, one-step, homogeneous phase detection method in order to confirm DNA amplification after polymerase chain reaction (PCR).
Staphylococcus aureus frequently invades the human bloodstream, leading to life threatening bacteremia and often secondary foci of infection. Failure of antibiotic therapy to eradicate infection is frequently described; in some cases associated with altered S. aureus antimicrobial resistance or the small colony variant (SCV) phenotype. Newer antimicrobials, such as linezolid, remain the last available therapy for some patients with multi-resistant S. aureus infections. Using comparative and functional genomics we investigated the molecular determinants of resistance and SCV formation in sequential S. aureus isolates from a patient who had a persistent and recurrent S. aureus infection, after failed therapy with multiple antimicrobials, including linezolid. Two point mutations in key staphylococcal genes dramatically affected clinical behaviour of the bacterium, altering virulence and antimicrobial resistance. Most strikingly, a single nucleotide substitution in relA (SACOL1689) reduced RelA hydrolase activity and caused accumulation of the intracellular signalling molecule guanosine 3′, 5′-bis(diphosphate) (ppGpp) and permanent activation of the stringent response, which has not previously been reported in S. aureus. Using the clinical isolate and a defined mutant with an identical relA mutation, we demonstrate for the first time the impact of an active stringent response in S. aureus, which was associated with reduced growth, and attenuated virulence in the Galleria mellonella model. In addition, a mutation in rlmN (SACOL1230), encoding a ribosomal methyltransferase that methylates 23S rRNA at position A2503, caused a reduction in linezolid susceptibility. These results reinforce the exquisite adaptability of S. aureus and show how subtle molecular changes cause major alterations in bacterial behaviour, as well as highlighting potential weaknesses of current antibiotic treatment regimens.
A new azophenol-based colorimetric sensor shows a selective detection for pyrophosphate in aqueous solution.
The need to decipher various biological events has led to the elucidation of the molecular mechanisms underlying a number of disease processes. Consequently, the detection and simultaneous monitoring of chemical interactions between biological targets has become indispensable in medical diagnosis, targeted therapeutics, and molecular biology. Multiplexed applications employing nanomaterials, which represent the integration of nanotechnology and biology, have changed the bioanalytical outlook and provided various promising tools. Among these nanomaterials, fluorescent dye-doped silica nanoparticles have demonstrated excellent potential for use in advanced bioanalysis to facilitate deeper understanding of biology and medicine at the molecular level. In particular, silica nanoparticles have been applied to diagnostics and therapeutic applications in cancer and gene/drug delivery. This feature article summarizes recent developments in the synthesis, biocompatibility, and bioapplications of fluorescent dye-doped silica nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.