Milk consumption, dry feed intake, body weight (BW) gain, occurrence of diarrhea, and selected blood metabolites were studied in female Holstein calves fed milk either through conventional or step-down (STEP) methods. In conventional method, the calves (n = 20) were fed colostrum and then milk at the rate of 10% of BW for the entire period of 45 d. In STEP method, the calves (n = 20) were given colostrum and then milk for 25 d at the rate of 20% of BW, which was reduced (between d 26 to 30) to 10% of BW for the remaining 15 d. The calves fed through conventional and STEP methods were weaned gradually by diluting milk with water between d 46 and 50. Feed intake and BW of the calves were monitored until 90 d of age. The STEP calves consumed 92.3, 19.4, and 62.4% more milk than conventionally fed calves during pre-STEP (d 1 to 30), post-STEP (d 31 to 50), and preweaning (d 1 to 50) periods, respectively. Consumption of starter and hay were greater during the pre-STEP period and lesser during the post-STEP and postweaning (d 51 to 90) periods in calves provided milk using conventional method compared with STEP-fed calves. Body weight gain, dry matter intake, and feed efficiency of calves were greater in those on the STEP method than on the conventional method. Lesser blood glucose and greater blood urea nitrogen at weaning (d 50) and postweaning (d 60) possibly indicated a better functioning rumen in calves fed milk through The STEP method than those fed conventionally. Occurrence of diarrhea was higher during wk 3 and 4 of age in calves fed milk through conventional method compared with STEP-fed calves. In conclusion, STEP milk feeding may prevent the problems of depressed solid feed intake associated with ad libitum milk feeding and of poor BW gain with conventional milk feeding in dairy calves.
Direct-fed microbials (DFM) are dietary supplements that inhibit gastrointestinal infection and provide optimally regulated microbial environments in the digestive tract. As the use of antibiotics in ruminant feeds has been banned, DFM have been emphasized as antimicrobial replacements. Microorganisms that are used in DFM for ruminants may be classified as lactic acid producing bacteria (LAB), lactic acid utilizing bacteria (LUB), or other microorganisms including species of Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus, Bacillus and Propionibacterium, strains of Megasphaera elsdenii and Prevotella bryantii and yeast products containing Saccharomyces and Aspergillus. LAB may have beneficial effects in the intestinal tract and rumen. Both LAB and LUB potentially moderate rumen conditions and improve feed efficiency. Yeast DFM may reduce harmful oxygen, prevent excess lactate production, increase feed digestibility, and improve fermentation in the rumen. DFM may also compete with and inhibit the growth of pathogens, stimulate immune function, and modulate microbial balance in the gastrointestinal tract. LAB may regulate the incidence of diarrhea, and improve weight gain and feed efficiency. LUB improved weight gain in calves. DFM has been reported to improve dry matter intake, milk yield, fat corrected milk yield and milk fat content in mature animals. However, contradictory reports about the effects of DFM, dosages, feeding times and frequencies, strains of DFM, and effects on different animal conditions are available. Cultivation and preparation of ready-to-use strict anaerobes as DFM may be cost-prohibitive, and dosing methods, such as drenching, that are required for anaerobic DFM are unlikely to be acceptable as general on-farm practice. Aero-tolerant rumen microorganisms are limited to only few species, although the potential isolation and utilization of aero-tolerant ruminal strains as DFM has been reported. Spore forming bacteria are characterized by convenience of preparation and effectiveness of DFM delivery to target organs and therefore have been proposed as DFM strains. Recent studies have supported the positive effects of DFM on ruminant performance.
Ruminal parameters, rumen development, nutrient digestibilities, and N utilization were estimated in Holstein calves fed starch from different sources. Ground corn, ground barley, ground wheat, and crimped oats were used to formulate 4 isostarch (25% of starter dry matter) pelleted diets. These diets were randomly allocated to calves (16 calves per treatment, 8 female and 8 male) and fed ad libitum along with mixed grass hay throughout the experiment. Ruminal contents and blood were sampled at d 35, 50, and 70 of age to estimate ruminal parameters and plasma beta-hydroxybutyrate, respectively. At d 70, twenty-four male calves (6/treatment) were randomly selected, euthanized, and forestomach weight, papillae length (PL), papillae width (PW), rumen wall thickness (RWT), and papillae concentration were measured. At d 63, twenty-four female calves (6/treatment) were randomly selected and moved to metabolism stalls to estimate total tract apparent nutrient digestibilities and N utilization. Female calves were given 2 wk for adaptation to experimental facilities and then total collections of feces and urine were made from d 77 to 84 of age. Ruminal pH at d 35 of age was higher in calves fed corn and oat diets than in those fed barley and wheat diets. Ruminal pH at d 50 and 70 of age was the lowest in calves on barley diets followed by those on oat and wheat diets and then by those on the corn diet. Ruminal total volatile fatty acid concentrations at d 35 of age were greatest in calves fed corn or wheat diets followed by those fed barley and oat diets. Calves on corn and wheat diets maintained greater ruminal volatile fatty acids concentrations at d 50 and 70 of age. Ruminal ammonia, acetate, propionate, butyrate, and blood beta-hydroxybutyrate concentrations were also greater in calves on the corn and wheat diets. Full and empty weights of forestomach, PL, PW, RWT, and papillae concentrations were greater in calves on corn and wheat diets. Daily average intake of nutrients (dry matter, crude protein, neutral detergent fiber, starch, Ca, and P) was greater in calves fed corn and wheat diets than in those fed barley and oat diets. Starch source did not influence the total tract apparent digestibilities of nutrients in calves. Daily N retention (g/d) was greatest on the corn diet followed by the wheat diet and then the barley and oat diets. In conclusion, calves on a corn diet have greater ruminal capacity to accommodate feed bulk. More physically and metabolically functional rumens in calves on corn and wheat diets probably resulted in greater feed consumption and N retention.
To assess the relative contributions of microbial groups (bacteria, protozoa, and fungi) in rumen fluids to the overall process of plant cell wall digestion in the rumen, representatives of these groups were selected by physical and chemical treatments of whole rumen fluid and used to construct an artificial rumen ecosystem. Physical treatments involved homogenization, centrifugation, filtration, and heat sterilization. Chemical treatments involved the addition of antibiotics and various chemicals to rumen fluid. To evaluate the potential activity and relative contribution to degradation of cell walls by specific microbial groups, the following fractions were prepared: a positive system (whole ruminal fluid), a bacterial (B) system, a protozoal (P) system, a fungal (F) system, and a negative system (cell-free rumen fluid). To assess the interactions between specific microbial fractions, mixed cultures (B؉P, B؉F, and P؉F systems) were also assigned. Patterns of degradation due to the various treatments resulted in three distinct groups of data based on the degradation rate of cell wall material and on cell wall-degrading enzyme activities. The order of degradation was as follows: positive and F systems > B system > negative and P systems. Therefore, fungal activity was responsible for most of the cell wall degradation. Cell wall degradation by the anaerobic bacterial fraction was significantly less than by the fungal fraction, and the protozoal fraction failed to grow under the conditions used. In general, in the mixed culture systems the coculture systems demonstrated a decrease in cellulolysis compared with that of the monoculture systems. When one microbial fraction was associated with another microbial fraction, two types of results were obtained. The protozoal fraction inhibited cellulolysis of cell wall material by both the bacterial and the fungal fractions, while in the coculture between the bacterial fraction and the fungal fraction a synergistic interaction was detected.Bacteria, protozoa, and fungi have been shown to be the microorganisms involved in plant cell wall digestion in the rumen. However, due to the difficulty of separating each microbial group in the rumen, to difficulties in measuring fungal biomass, and to the complex nature of the rumen ecosystem, the precise role and overall contribution of each microbial group to the degradation and fermentation of plant cell wall material is not understood. In spite of complicated interrelationships among the microorganisms (e.g., bacteria, protozoa, and fungi) in the rumen ecosystem, bacteria are believed to play a major role because of their numerical predominance and metabolic diversity (7). However, protozoa have been shown to digest from 25 to 30% of total fiber. The extent of the involvement of fungi, however, has not yet been estimated. Interaction effects between microorganisms can range from synergism to antagonism and depend on the microbial groups and species involved and the type of substrate used. In vitro examinations to estimate the role...
Holstein calves were fed pelleted iso-starch (25% of starter dry matter) diets containing barley (n = 16), corn (n = 16), oat (n = 16), and wheat (n = 16) starch for 12 wk of age. Feed consumption, nutrient intake, body weight (BW) gain, skeletal growth, and selected blood metabolites in calves during preweaning (d 1 to 49) and postweaning (d 50 to 84) periods were measured. Average daily starter consumption during pre-weaning and postweaning periods was the greatest in calves fed corn died followed by those fed a wheat diet and then in those fed barley and oat diets. During the preweaning period, the calves provided corn and wheat diets consumed greater amount of mixed grass hay than those fed barley and oat diets. During the postweaning period, mixed grass hay intake was the greatest in calves provided corn diet followed by those fed a wheat diet and then in those fed barley and oat diets. Nutrients (dry matter, crude protein, starch, and neutral detergent fiber) intake followed the solid feed consumption pattern in calves. Body weight and body measurements (body length, body barrel, heart girth, wither height, and hip height) at birth and at weaning (d 49) in calves fed different starch sources were similar. Body weight and body measurements at postweaning (d 84) were the greatest in calves fed a corn diet followed by those fed a wheat diet and then in those fed barley and oat diets. Overall average BW gain and total dry matter intake were the greatest in calves fed a corn diet than in those fed wheat, barley, and oat diets. Feed efficiency was greater in calves fed corn and wheat diets than in those fed barley and oat diets. Blood glucose, blood urea N, triglycerides, cholesterol, and creatinine were reduced with the advancing age of calves. Lesser blood glucose and greater blood urea N concentrations at wk 8, 10, and 12 of age were noticed in calves fed corn diet than in those fed barley, oat, and wheat diets. Occurrence of diarrhea was more frequent in calves fed oat diet than in those provided barley, corn, and wheat diets. Starch sources did not influence respiratory score, rectal temperature, and general appearance score. In conclusion, the calves on corn diet consumed more solid feed and gained greater BW than those fed barley, oat, and wheat diets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.