Polymer electrolyte membranes (PEMs) selectively transport ions and polar molecules in a robust yet formable solid support. Tailored PEMs allow for devices such as solid-state batteries,'artificial muscle' actuators and reverse-osmosis water purifiers. Understanding how PEM structure and morphology relate to mobile species transport presents a challenge for designing next-generation materials. Material length scales from subnanometre to 1 μm influence bulk properties such as ion conductivity and water transport. Here we employ multi-axis pulsed-field-gradient NMR to measure diffusion anisotropy, and (2)H NMR spectroscopy and synchrotron small-angle X-ray scattering to probe orientational order as a function of water content and of membrane stretching. Strikingly, transport anisotropy linearly depends on the degree of alignment, signifying that membrane stretching affects neither the nanometre-scale channel dimensions nor the defect structure,causing only domain reorientation. The observed reorientation of anisotropic domains without perturbation of the inherent nematic-like domain character parallels the behaviour of nematic elastomers, promises tailored membrane conduction and potentially allows understanding of tunable shape-memory effects in PEM materials. This quantitative understanding will drive PEM design efforts towards optimal membrane transport, thus enabling more efficient polymeric batteries, fuel cells, mechanical actuators and water purification.
Relations between morphology and transport sensitively govern proton conductivity in perfluorsulfonate ionomers (PFSIs) and thus determine useful properties of these technologically important materials. In order to understand such relations, we have conducted a broad systematic study of H + -form PFSI membranes over a range of uniaxial extensions and water uptakes. On the basis of small-angle X-ray scattering (SAXS) and 2 H NMR spectroscopy, uniaxial deformation induces a strong alignment of ionic domains along the stretching direction. We correlate ionic domain orientation to transport using pulsed-field-gradient 1 H NMR measurements of water diffusion coefficients along the three orthogonal membrane directions. Intriguingly, we observe that uniaxial deformation enhances water transport in one direction (parallel-to-draw direction) while reducing it in the other two directions (two orthogonal directions relative to the stretching direction). We evaluate another important transport parameter, proton conductivity, along two orthogonal in-plane directions. In agreement with water diffusion experiments, orientation of ionic channels increases proton conduction along the stretching direction while decreasing it in the perpendicular direction. These findings provide valuable fodder for optimal application of PFSI membranes as well as for the design of next generation polymer electrolyte membranes.
We report the formation of a double-gyroid network morphology in normal-tapered poly(isoprene-b-isoprene/styrene-b-styrene) [P(I-IS-S)] and inverse-tapered poly(isoprene-b- styrene/isoprene-b-styrene) [P(I-SI-S)] diblock copolymers. Our tapered diblock copolymers with overall poly(styrene) volume fractions of 0.65 (normal-tapered) and 0.67 (inverse-tapered), and tapered regions comprising 30 volume percent of the total polymer, were shown to self-assemble into the double-gyroid network morphology through a combination of small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The block copolymers were synthesized by anionic polymerization, where the tapered region between the pure poly(isoprene) and poly(styrene) blocks was generated using a semi-batch feed with programmed syringe pumps. The overall composition of these tapered copolymers lies within the expected network-forming region for conventional poly(isoprene-b-styrene) [P(I-S)] diblock copolymers. Dynamic mechanical analysis (DMA) clearly demonstrated that the order-disorder transition temperatures (TODT’s) of the network-forming tapered block copolymers were depressed when compared to the TODT of their non-tapered counterpart, with the P(I-SI-S) showing the greater drop in TODT. These results indicate that it is possible to manipulate the copolymer composition profile between blocks in a diblock copolymer, allowing significant control over the TODT, while maintaining the ability to form complex network structures.
This work demonstrates the ability of quasielastic neutron scattering (QENS) to measure the dynamics associated with counterions in perfluorosulfonate ionomers (PFSIs). PFSI membranes were prepared by neutralizing with hydrogenated alkyl ammonium counterions. Counterion dynamics were measured using the High-Flux Backscattering Spectrometer at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). Long-range mobility of the counterions was closely linked with the α-relaxation in these materials measured by dynamic mechanical analysis (DMA). The counterion motions in the membrane were found to follow a mechanism of random jump-diffusion within a confined spatial region with diffusion coefficients on the order of 10−7 cm2 s−1. These data are presented along with variable temperature X-ray scattering investigations of the melting behavior of these materials. Altogether, the data presented here show the link between the onset of long-range counterion mobility and the mechanical properties of these materials. These data provide further fundamental understanding of the link between electrostatic interactions and dynamics in PFSI materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.