A facile and scalable technique to fabricate optically transparent, mechanically flexible and self-cleanable superhydrophobic films for practical solar cell applications is proposed. The superhydrophobic films were fabricated simply by transferring a transparent porous alumina layer, which was prepared using an anodic aluminium oxidation (AAO) technique, onto a polyethylene terephthalate (PET) film with a UV-curable polymer adhesive layer, followed by the subsequent formation of alumina nano pyramids (NPs) through the time-controlled chemical etching of the transferred porous alumina membrane (PAM). It was found experimentally that the proposed functional films can ensure the superhydrophobicity in the Cassie-Baxter wetting mode with superior water-repellent properties through a series of experimental observations including static contact angle (SCA), contact angle hysteresis (CAH), sliding behaviour on the tilted film, and dynamic behaviour of the liquid droplet impacting on the film. In addition to the superior surface wetting properties, an optical transmittance of ∼79% at a light wavelength of 550 nm was achieved. Furthermore, there was no significant degradation in both the surface wetting properties and morphology even after 1500-cycles of repetitive bending tests, which indicates that the proposed superhydrophobic film is mechanically robust. Finally, the practicability of the proposed self-cleanable film was proven quantitatively by observing the changes in the power conversion efficiency (PCE) of a photovoltaic device covering the film before and after the cleaning process.
Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of <3.5°) in the Cassie-Baxter wetting regime, considerable dynamic water repellency (with perfect bouncing of a water droplet dropped from an impact height of 30 mm), and good optical transparency (>82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.