The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WO x layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WO x on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WO x layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WO x formed on the sidewall of tungsten line could be observed.
The degradation of a low-k material surface during the exposure to plasma etching is one of the most serious problems to be solved for the realization of high speed semiconductor devices. In this study, the factors causing the degradation of a low-k material surface during the etching using fluorine-based plasma etching have been investigated by using XPS. As the plasma factors, active radicals, bombardment energy, and charge of the ions were considered and, as the low-k material, methyl silsesquioxane (MSQ) has been used. The XPS results showed that the ion bombardment during the plasma etching of MSQ affects the breaking of MSQ bone structure by changing the Si-O bonds and Si-C bonds to Si-F mostly, while fluorine-based radicals in the plasma mostly affect the change of Si-CH3 bonds to Si-CH(x)F(y). By removing the charge of the ions during the bombardment, the MSQ properties were further improved. When F intensity which is related to the damage of the MSQ surface is estimated, the bombardment energy, reactive radical density, and charge of the ions were responsible for -18%, -53%, -19% of the F intensity in the MSQ. Therefore, by using the neutral beam etching instead of a conventional ICP etching, the degradation on the MSQ surface estimated by the F intensity remaining on the MSQ surface could be decreased to 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.