SummaryKetogenic dietary therapies (KDTs) are established, effective nonpharmacologic treatments for intractable childhood epilepsy. For many years KDTs were implemented differently throughout the world due to lack of consistent protocols. In 2009, an expert consensus guideline for the management of children on KDT was published, focusing on topics of patient selection, pre‐KDT counseling and evaluation, diet choice and attributes, implementation, supplementation, follow‐up, side events, and KDT discontinuation. It has been helpful in outlining a state‐of‐the‐art protocol, standardizing KDT for multicenter clinical trials, and identifying areas of controversy and uncertainty for future research. Now one decade later, the organizers and authors of this guideline present a revised version with additional authors, in order to include recent research, especially regarding other dietary treatments, clarifying indications for use, side effects during initiation and ongoing use, value of supplements, and methods of KDT discontinuation. In addition, authors completed a survey of their institution's practices, which was compared to responses from the original consensus survey, to show trends in management over the last 10 years.
SUMMARYThe ketogenic diet (KD) is an established, effective nonpharmacologic treatment for intractable childhood epilepsy. The KD is provided differently throughout the world, with occasionally significant variations in its administration. There exists a need for more standardized protocols and management recommendations for clinical and research use. In December 2006, The Charlie Foundation commissioned a panel comprised of 26 pediatric epileptologists and dietitians from nine countries with particular expertise using the KD. This group was created in order to create a consensus statement regarding the clinical management of the KD. Subsequently endorsed by the Practice Committee of the Child Neurology Society, this resultant manuscript addresses issues such as patient selection, pre-KD counseling and evaluation, specific dietary therapy selection, implementation, supplementation, follow-up management, adverse event monitoring, and eventual KD discontinuation. This paper highlights recommendations based on best evidence, including areas of agreement and controversy, unanswered questions, and future research.
The therapeutic potential of calorie restriction and the ketogenic diet have been repeatedly demonstrated in clinical settings and in various animal models of neurological disease. The underlying mechanisms involve an improvement in mitochondrial function, a decrease in the expression of apoptotic factors and an increase in the activity of neurotrophic factors. Clinical applications of ketogenic diets have been significantly hampered however by poor tolerability and potentially serious side-effects. Recent research aimed at identifying a mediator that can reproduce the neuroprotective effects of calorie restriction with less demanding changes to dietary intake suggests that ketone bodies might represent an appropriate candidate. Ketone bodies protect neurons against multiple types of neuronal injury and the underlying mechanisms are similar to those of calorie restriction and of the ketogenic diet. The present review describes the neuroprotective effects of calorie restriction, the ketogenic diet and ketone bodies and compare the molecular mechanisms of action of these interventions.
Dietary protocols that increase serum levels of ketones, such as calorie restriction and the ketogenic diet, offer robust protection against a multitude of acute and chronic neurological diseases. The underlying mechanisms, however, remain unclear. Previous studies have suggested that the ketogenic diet may reduce free radical levels in the brain. Thus, one possibility is that ketones may mediate neuroprotection through antioxidant activity. In the present study, we examined the effects of the ketones β-hydroxybutyrate and acetoacetate on acutely dissociated rat neocortical neurons subjected to glutamate excitotoxicity using cellular electrophysiological and single-cell fluorescence imaging techniques. Further, we explored the effects of ketones on acutely isolated mitochondria exposed to high levels of calcium. A combination of β-hydroxybutyrate and acetoacetate (1 mM each) decreased neuronal death and prevented changes in neuronal membrane properties induced by 10 μM glutamate. Ketones also significantly decreased mitochondrial production of reactive oxygen species and the associated excitotoxic changes by increasing NADH oxidation in the mitochondrial respiratory chain, but did not affect levels of the endogenous antioxidant glutathione. In conclusion, we demonstrate that ketones reduce glutamate-induced free radical formation by increasing the NAD + /NADH ratio and enhancing mitochondrial respiration in neocortical neurons. This mechanism may, in part, contribute to the neuroprotective activity of ketones by restoring normal bioenergetic function in the face of oxidative stress. Keywordsglutamate; neurotoxicity; diet; mitochondria; oxidation; stress Address correspondence to: Jong M. Rho, MD., Neurology Research, NRC 4 th Fl., Barrow Neurological Institute and St. Joseph's Hospital & Medical Center, 350 W. Thomas Road, Phoenix, AZ 85013, Email: jong.rho@chw.edu. Section Editor: Molecular Neuroscience W. Sieghart, Brain Research Institute, University of Vienna, Division of Biochemistry and Molecular Biology, Spitalgasse 4, A-1090 Vienna, Austria Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Calorie restriction can decrease the risk of neurodegenerative disease and protect the brain against acute insults such as stroke (Mattson et al, 2002). Similarly, the ketogenic diet, a highfat, low-carbohydrate diet created to mimic the effects of calorie restriction, is an extremely efficacious treatment for medically intractable epilepsy Vining et al, 1998). Several metabolic changes occur during calorie restriction and the ketogenic diet, notably an increase in seru...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.