The Ministry of Environment in Korea aims to reduce non-point source (NPS) pollution and improve soil water management by expanding NPS priority management areas. Six NPS priority management areas to reduce suspended solids (SS) according to soil loss were chosen as they either constitute serious hazards to the natural ecosystem due to NPS pollutants or they are areas with unusual geologic structure or strata. Although more comprehensive standards are required for effective NPS management, however, no detailed consideration factors and standards are available in the legal provisions. Therefore, in this study, based on the existing six priority NPS management areas and using results from previous studies, we present detailed legal designation standards. We found that the higher the altitude, slope, and field area ratio, the higher the effect of SS on water quality during rainfall. Additionally, there is a high correlation as R2 0.9813 between SS and the habitat and riparian index. These results are useful for establishing detailed standards for areas requiring an NPS management system, future expansion of the NPS priority management area designation, and policymaking and research for reducing NPS pollution in Korea.
Owing to urbanization, impervious areas within watersheds have continuously increased, distorting healthy water circulation systems by reducing soil infiltration and base flow; moreover, increases in surface runoff deteriorate water quality by increasing the inflow of nonpoint sources. In this study, we constructed a Hydrological Simulation Program—Fortran (HSPF) watershed model that applies the impervious area and can set medium- and long-term water circulation management goals for watershed sub-areas. The model was tested using a case study from the Yeongsan River watershed, Korea. The results show that impervious land-cover accounts for 18.47% of the upstream reach in which Gwangju City is located; approximately twice the average for the whole watershed. Depending on the impervious area reduction scenario, direct runoff and nonpoint source load could be reduced by up to 56% and 35%, respectively; the water circulation rate could be improved by up to 16%. Selecting management goals requires the consideration of both policy objectives and budget. For urban areas with large impervious cover, the designation of nonpoint source management areas is required. For new cities, it is necessary to introduce water circulation systems (e.g., low impact development techniques) to improve rainwater penetration and recharge and activate preemptive water circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.