A series of amphiphilic graft copolymers based on polyaspartamide were synthesized by successive aminolysis reactions of polysuccinimide using 2‐diisopropylaminoethyl (DIP), O‐(2‐aminoethyl)‐O′‐methylpolyethylene glycol (PEG) and lauryl amine as pH‐sensitive, hydrophilic and hydrophobic groups, respectively. The pH‐dependent self‐assembly behavior of the aqueous copolymer solution was investigated. Nano‐aggregation, which was induced by a hydrophilic/hydrophobic shift of the DIP group in solution, occurred at a pH in the vicinity of the pKa of the DIP group. The mean diameter of the nano‐aggregate could be modulated by changing the compositions of both pendants. The mean diameter of the nanoparticles increased with increasing solution pH from 6.5 to 8. The dissolution of paclitaxel into these amphiphilic nanoparticles was attempted and the pH‐dependent release behavior was examined using a solvent‐casting method. The results showed a significantly faster release of paclitaxel at pH = 6.5, which is a tumoral acidic pH, than at neutral physiological pH. These pH‐sensitive PEGylated polyaspartamide derivatives have potential use as a tumor‐targeting delivery system.
Novel amphiphilic, thermo-and pH-responsive polyaspartamides showing both double-responsive (pH and temperature) behavior and a sol-gel transition were prepared and characterized. The polyaspartamide derivatives were synthesized by the successive aminolysis reactions of polysuccinimide using both hydrophobic N-alkylamine (laurylamine, octylamine, hexylamine) and hydrophilic N-isopropylethylenediamine. The composition of each component was analyzed by 1 H NMR. At the intermediate composition range, the system showed a lower critical solution temperature behavior in water. The transition temperature (pH dependent) could be modulated by changing the alkyl chain length and graft composition. The temperature dependence of the nanoparticle size distribution of the polyaspartamide derivatives was also examined. The critical micelle concentration of the copolymers in a phosphate-buffered saline (pH 7.4) solution ranged from 6 to 20 lg/L. In addition, physical gelation, i.e., a sol-gel transition, was observed in a concentrated solution. These novel doubleresponsive and injectable hydrogels have potential biomedical applications such as drug delivery systems and tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.