3D printing of reduced graphene oxide (rGO) nanowires is realized at room temperature by local growth of GO at the meniscus formed at a micropipette tip followed by reduction of GO by thermal or chemical treatment. 3D rGO nanowires with diverse and complicated forms are successfully printed, demonstrating their ability to grow in any direction and at the selected sites.
Moving printed electronics to three dimensions essentially requires advanced additive manufacturing techniques yielding multifunctionality materials and high spatial resolution. Here, we report the meniscus-guided 3D printing of highly conductive multiwall carbon nanotube (MWNT) microarchitectures that exploit rapid solidification of a fluid ink meniscus formed by pulling a micronozzle. To achieve high-quality printing with continuous ink flow through a confined nozzle geometry, that is, without agglomeration and nozzle clogging, we design a polyvinylpyrrolidone-wrapped MWNT ink with uniform dispersion and appropriate rheological properties. The developed technique can produce various desired 3D microstructures, with a high MWNT concentration of up to 75 wt % being obtained via post-thermal treatment. Successful demonstrations of electronic components such as sensing transducers, emitters, and radio frequency inductors are also described herein. We expect that the technique presented in this study will facilitate selection of diverse materials in 3D printing and enhance the freedom of integration for advanced conceptual devices.
An accurate method for detecting vital signs obtained from a Doppler radar sensor is proposed. A Doppler radar sensor can remotely obtain vital signs such as heartbeat and respiration rate, but the vital signs obtained by using the sensor do not show clear peaks like in electrocardiography (ECG) because of the operating characteristics of the radar. The proposed peak detection algorithm extracts the vital signs from the raw data. The algorithm shows the mean accuracy of 96.78% compared to the peak count from the reference ECG sensor and a processing time approximately two times faster than the gradient-based algorithm. To verify whether heart rate variability (HRV) analysis similar to that with an ECG sensor is possible for a radar sensor when applying the proposed method, the continuous parameter variations of the HRV in the time domain are analyzed using data processed with the proposed peak detection algorithm. Experimental results with six subjects show that the proposed method can obtain the heart rate with high accuracy but cannot obtain the information for an HRV analysis because the proposed method cannot overcome the characteristics of the radar sensor itself.
The IOP-lowering effects of PEGS do not differ significantly from those of PE in medically well-controlled CACG patients with cataract. These results suggest that additional goniosynechialysis during phacoemulsification is not necessary in such patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.