BackgroundGleditsia sinensis thorns have been widely used in traditional Korean medicine for the treatment of several diseases, including obesity, thrombosis, and tumor-related diseases. The aim of the study is to determine the antiangiogenic effect of Gleditsia sinensis thorns in vitro and in vivo in a bid to evaluate its potential as an anticancer drug.MethodsEthanol extract of Gleditsia sinensis thorns (EEGS) were prepared and used for in vitro and in vivo assays. In vitro antiangiogenic effect of EEGS was determined in HUVEC primary cells by cell migration and tube formation assays. In vivo antiangiogenic effect of EEGS was determined by measuring vessel formation and vascular endothelial cells migrating into the implanted matrigels in nude mice. The angiogenesis-related proteins of which expression levels were altered by EEGS were identified by proteomic analysis.ResultsEEGS exerted a dose-dependent antiproliferative effect on HUVEC cells without significant cytotoxicity. Angiogenic properties, such as cell migration and tube formation, were significantly inhibited by EEGS in a dose-dependent manner. New vessel formation was also suppressed by EEGS, as determined by the directed in vivo angiogenesis assays in nude mice. EEGS reduced the expression of proangiogenic proteins, endothelin 1 and matrix metallopeptidase 2, in HUVEC cells.ConclusionsOur findings suggest that EEGS can inhibit angiogenesis by down-regulating proangiogenic proteins, and therefore it should be considered as a potential anticancer drug targeting tumor-derived angiogenesis.
Angiogenesis, the process of new vessel formation from the pre-existing blood vasculature, is critical for continuous tumor growth and is considered to be a validated antitumor target. The results of our previous study demonstrate the anti-angiogenic potential of an extract of Gleditsia sinensis thorns, which has been traditionally used in Korean medicine to remedy diverse diseases, including tumors. In the present study, we attempted to identify the active anti-angiogenic constituents of the ethanol extract of G. sinensis thorns (EEGS). By virtue of in vitro activity-guided fractionation using human umbilical vein endothelial cells (HUVEC) primary endothelial cells, chromatographic separation, and NMR spectral analyses, we isolated and identified the potent active constituent, cytochalasin H, a biologically active secondary metabolite of fungi. This unexpected active constituent may have originated from the endophytic fungi, Chaetomium globosum, which naturally populate G. sinensis, the identity of which was determined by analysis of fungal community. Cytochalasin H isolated from the EEGS showed in vitro anti-angiogenic activities such as suppressed cell growth and mobility in HUVEC, and inhibited the pro-angiogenic protein-induced formation of new blood vessels in vivo. The anti-angiogenic effect of cytochalasin H was in part due to reduced expression of pro-angiogenic factor, such as endothelin-1. This is the first report regarding the isolation and identification of cytochalasin H, as an active anti-angiogenic constituent of G. sinensis thorns.
BackgroundOxaliplatin can induce peripheral neuropathy (OXIPN) as an adverse side effect in cancer patients. Until now, no effective preventive or therapeutic drug has been developed; therefore, the dose-limiting factor of OXIPN is still an obstacle in the use of oxaliplatin to treat cancer patients. In the present study, we report for the first time that the aqueous extract of Lithospermi radix (WLR) can attenuate the OXIPN in both in vitro and in vivo neuropathic models.MethodsThe protective effect of WLR on OXIPN was evaluated in vitro by quantifying nerve growth factor (NGF)-stimulated neurite outgrowth in PC12 cells treated with a combination of oxaliplatin and WLR. The neuroprotective potential of WLR was further confirmed by measuring the changes in nociceptive sensitivities to external mechanical stimuli in neuropathic animals induced by oxaliplatin. Histological and immunohistochemical studies were further done to examine the effect of WLR in mouse spinal cords and footpads.ResultsOxaliplatin-induced neurotoxicity in NGF-stimulated PC12 cells. It could reduce the lengths and branching numbers of neuritis in NGF-stimulated PC12 cells. Co-treatment of WLR rescued the differentiated PC12 cells from the neurotoxicity of oxaliplatin. In a chronic OXIPN animal model, administration of oxaliplatin i.p. induced enhanced nociceptive sensitivity to mechanical stimuli (25.0 to 72.5 % of response rate) along with spinal activation of microglias and astrocytes and loss of intraepidermal nerve fibers in footpads, which is remarkably suppressed by oral administration of WLR (67.5 to 35 % of response rate at the end of experiment). Cytotoxicity of oxaliplatin determined in human cancer cells was not affected irrespective of the presence of WLR.ConclusionsIn conclusion, we demonstrated that WLR can attenuate OXIPN in both in vitro and in vivo experimental models, which may be in part attributed to its anti-inflammatory activity in the spinal cord and its neuroprotective potential in the peripheral nerve system without affecting the anti-tumor potential of oxaliplatin. Therefore, WLR could be considered as a good starting material to develop a novel therapeutic agent targeting OXIPN. However, further studies should be done to elucidate the underlying mechanism such as molecular targets and active constituent(s) in WLR with neuroprotective potential.
Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been reported to possess anticancer activity. Recent studies have also demonstrated that magnolol inhibits cell growth and induces the apoptosis of cancer cells. However, the effects of magnolol on vascular endothelial growth factor (VEGF)-induced angiogenesis in endothelial cells have not been studied. In the present study, we have used human umbilical vein endothelial cells (HUVECs) to investigate the antiangiogenic effect and molecular mechanism of magnolol. Magnolol inhibited the VEGF-induced proliferation, chemotactic motility and tube formation of HUVECs in vitro as well as the vessel sprouting of the aorta ex vivo. Furthermore, magnolol inhibited VEGF-induced Ras activation and subsequently suppressed extracellular signal-regulated kinase (ERK), phosphatidylinositol-3-kinase (PI3K)/Akt and p38, but not Src and focal adhesion kinase (FAK). Interestingly, the knockdown of Ras by short interfering RNA produced inhibitory effects that were similar to the effects of magnolol on VEGF-induced angiogenic signaling events, such as ERK and Akt/eNOS activation, and resulted in the inhibition of proliferation, migration, and vessel sprouting in HUVECs. In combination, these results demonstrate that magnolol is an inhibitor of angiogenesis and suggest that this compound could be a potential candidate in the treatment of angiogenesis-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.