A mobile ad hoc network (MANET) is a dynamically reconfigurable wireless network that does not have a fixed infrastructure. Due to the high mobility of nodes, the network topology of MANETs changes very fast, making it more difficult to find the routes that message packets use. Because mobile nodes have limited battery power, it is therefore very important to use energy in a MANET efficiently. In this paper, we propose a power-aware multicast routing protocol (PMRP) with mobility prediction for MANETs. In order to select a subset of paths that provide increased stability and reliability of routes, in routing discovery, each node receives the RREQ packet and uses the power-aware metric to get in advance the power consumption of transmitted data packets. If the node has enough remaining power to transmit data packets, it uses the global positioning system (GPS) to get the location information (i.e., position, velocity and direction) of the mobile nodes and utilizes this information to calculate the link expiration time (LET) between two connected mobile nodes. During route discovery, each destination node selects the routing path with the smallest LET and uses this smallest link expiration time as the route expiration time (RET). Each destination node collects several feasible routes and then selects the path with the longest RET value as the primary routing path. Then the source node uses these routes between the source node and each destination node to create a multicast tree. In the multicast tree, the source node will be the root node and the destination nodes will be the leaf nodes. Simulation results show that the proposed PMRP outperforms MAODV (Royer, E. M.
The past few years have witnessed increased in the potential use of wireless sensor network (WSN) such as disaster management, combat field reconnaissance, border protection and security surveillance. Sensors in these applications are expected to be remotely deployed in large numbers and to operate autonomously in unattended environments. Since a WSN is composed of nodes with nonreplenishable energy resource, elongating the network lifetime is the main concern. To support scalability, nodes are often grouped into disjoint clusters. Each cluster would have a leader, often referred as cluster head (CH). A CH is responsible for not only the general request but also assisting the general nodes to route the sensed data to the target nodes. The power-consumption of a CH is higher then of a general (non-CH) node. Therefore, the CH selection will affect the lifetime of a WSN. However, the application scenario contexts of WSNs that determine the definitions of lifetime will impact to achieve the objective of elongating lifetime. In this study, we classify the lifetime into different types and give the corresponding CH selection method to achieve the life-time extension objective. Simulation results demonstrate our study can enlarge the life-time for different requests of the sensor networks.
Wireless sensor networks (WSNs) are made up of many small and highly sensitive nodes that have the ability to react quickly. In WSNs, sink mobility brings new challenges to large-scale sensor networks. Almost all of the energy-aware routing protocols that have been proposed for WSNs aim at optimizing network performance while relaying data to a stationary gateway (sink). However, through such contemporary protocols, mobility of the sink can make established routes unstable and non-optimal. The use of mobile sinks introduces a trade-off between the need for frequent rerouting to ensure optimal network operation and the desire to minimize the overhead of topology management. In this paper, in order to reduce energy consumption and minimize the overhead of rerouting frequency, we propose an energy-aware data aggregation scheme (EADA) for grid-based wireless sensor networks with a mobile sink. In the proposed scheme, each sensor node with location information and limited energy is considered. Our approach utilizes location information and selects a special gateway in each area of a grid responsible for forwarding messages. We restrict the flooding region to decrease the overhead for route decision by utilizing local information. We conducted simulations to show that the proposed routing scheme outperforms the coordination-based data dissemination scheme (CODE) (Xuan, H. L., & Lee, S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.