Accepted: 28 July 2016The technology of wideband code division multiple access (WCDMA) has been applied to band selective interference cancellation system (ICS) repeaters. To inspect the telecommunication quality of the systems, quality engineers must check the shape of the signals at the corresponding frequency band of the repeaters. However, measuring the signal quality is a repetitive manual task which requires much inspection time and high costs. In the case of small-sized samples, such as the example of an ICS repeater system, Bayesian approaches have been employed to improve the estimation accuracy by incorporating prior information on the parameters of the model in consideration. This research proposes a virtual method of quality inspection for products using a correlation structure of measurement data, mainly in a Bayesian regression framework. The Bayesian regression model derives prior information from historical measurement data to predict measurements of other frequency bandwidths by exploiting the correlation structure of each measurement data. Empirical results show the potential for reducing inspection costs and time by predicting the values of adjoining frequency bandwidths through measured data of a frequency bandwidth in the course of quality inspections of ICS repeater systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.