Background and Aim Magnetic resonance cholangiopancreatography (MRCP) can accurately diagnose common bile duct (CBD) stones but is laborious to interpret. We developed an artificial neural network (ANN) capable of automatically assisting physicians with the diagnosis of CBD stones. This study aimed to evaluate the ANN's diagnostic performance for detecting CBD stones in thick‐slab MRCP images and identify clinical factors predictive of accurate diagnosis. Methods The presence of CBD stones was confirmed via direct visualization through endoscopic retrograde cholangiopancreatography (ERCP). The absence of CBD stones was confirmed by either a negative endoscopic ultrasound accompanied by clinical improvements or negative findings on ERCP. Our base networks were constructed using state‐of‐the‐art EfficientNet‐B5 neural network models, which are widely used for image classification. Results In total, 3156 images were collected from 789 patients. Of these, 2628 images from 657 patients were used for training. An additional 1924 images from 481 patients were prospectively collected for validation. Across the entire prospective validation cohort, the ANN achieved a sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy of 93.03%, 97.05%, 97.01%, 93.12%, and 95.01%, respectively. Similarly, a radiologist achieved a sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy 91.16%, 93.25%, 93.22%, 90.20%, and 91.68%, respectively. In multivariate analysis, only bile duct diameter > 10 mm (odds ratio = 2.45, 95% confidence interval [1.08–6.07], P = 0.040) was related to ANN diagnostic accuracy. Conclusion Our ANN algorithm automatically and quickly diagnoses CBD stones in thick‐slab MRCP images, therein aiding physicians with optimizing clinical practice, such as whether to perform ERCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.