RGO flakes are homogeneously dispersed in a Cu matrix through a molecular-level mixing process. This novel fabrication process prevents the agglomeration of the RGO and enhances adhesion between the RGO and the Cu. The yield strength of the 2.5 vol% RGO/Cu nanocomposite is 1.8 times higher than that of pure Cu. The strengthening mechanism of the RGO is investigated by a double cantilever beam test using the graphene/Cu model structure.
Control of flow-induced forces on a circular cylinder using a detached splitter plate is numerically studied for laminar flow. A splitter plate with the same length as the cylinder diameter is placed horizontally in the wake region. Suppressing the vortex shedding, the plate significantly reduces drag force and lift fluctuation; there exists an optimal location of the plate for maximum reduction. However, they sharply increase as the plate is placed further downstream of the optimal location. This trend is consistent with the experimental observation currently available in the case of turbulent wake.
Vortical structures around a wall-mounted cubic obstacle in channel flow are studied using numerical simulation. Flows of low-to-moderate Reynolds numbers up to Reϭ3500 are considered. The objective of this work is to elucidate characteristics of coherent vortical structures produced by the presence of the wall-mounted cubic obstacle, including horseshoe vortex systems upstream of the obstacle, lateral vortices in the vicinity of the two lateral faces of the cube, and hairpin vortices in the near-wake region. As the flow approaches the cube, the adverse pressure gradient produces three-dimensional boundary-layer separation, resulting in the formation of laminar horseshoe vortices. As the Reynolds number increases, the structure of the horseshoe vortex system becomes complex and the number of vortices increases in pairs. The distribution of skin friction on the cube-mounted wall reflects the effect of the horseshoe vortices. Unsteady horseshoe vortex systems are hardly found as long as the upstream flow is fully viscous; they are obtained when the cube is placed in the entrance region of a developing channel flow. The unsteady horseshoe vortex systems are characterized by a repeated process of generation, translation, and mutual merging of the vortices. The laminar wake is characterized by a pair of spiral vortices behind the obstacle; distinct singular points are identified leading to consistent flow topology. In the case of a turbulent wake, however, it is observed that the flow becomes less coherent in the near-wall region downstream of the obstacle. Instead, coherent structures such as lateral vortices and hairpin vortices are found in the vicinity of the two lateral faces of the cube and in the turbulent near-wake region, respectively. Quasiperiodic behaviors of those vortices are noticed and their frequencies are computed. The translating speed of the head portion of a hairpin vortex is lower than the streamwise mean velocity at that location. In the vicinity of the lower wall downstream of the cube, vortical structures of various length scales are identified; they become gradually elongated downstream of the flow reattachment.
A new plasma/catalyst continuously regenerative hybrid system (PCRHS) is introduced to reduce diesel particulate matter (DPM), NOx, CO, etc., contained in diesel exhaust gas. The catalyst temperature, plasma energy density, and exhaust gas characteristics were investigated with a passenger diesel car (2500cc) at the dynamometer test bed and chassis dynamometer with CVS-75 test mode. It was reported that the smoke removal efficiency was around 70% at the dynamometer test bed with 80 W energy consumption, and that PM removal efficiency was 68% at the chassis dynamometer. The NOx was reduced up to 20% according to the electrode types and temperature, respectively. The hybrid system test shows that DPM and CO were almost removed and NOx reduced to 30% simultaneously by the system. Considering these results, PCRHS could be a promising method to regenerate diesel particulate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.