Classifications of symmetry-protected topological (SPT) phases provide a framework to systematically understand the physical properties and potential applications of topological systems. While such classifications have been widely explored in the context of Hermitian systems, a complete understanding of the roles of more general non-Hermitian symmetries and their associated classification is still lacking. Here, we derive a periodic table for non-interacting SPTs with general non-Hermitian symmetries. Our analysis reveals novel non-Hermitian topological classes, while also naturally incorporating the entire classification of Hermitian systems as a special case of our scheme. Building on top of these results, we derive two independent generalizations of Kramers theorem to the non-Hermitian setting, which constrain the spectra of the system and lead to new topological invariants. To elucidate the physics behind the periodic table, we provide explicit examples of novel non-Hermitian topological invariants, focusing on the symmetry classes in zero, one and two dimensions with new topological classifications (e.g. Z in 0D, Z2 in 1D, 2D). These results thus provide a framework for the design and engineering of non-Hermitian symmetry-protected topological systems. arXiv:1812.10490v2 [cond-mat.mes-hall]
Two graphene monolayers twisted by a small magic angle exhibit nearly flat bands, leading to correlated electronic states. Here we study a related but different system with reduced symmetry - twisted double bilayer graphene (TDBG), consisting of two Bernal stacked bilayer graphenes, twisted with respect to one another. Unlike the monolayer case, we show that isolated flat bands only appear on application of a vertical displacement field. We construct a phase diagram as a function of twist angle and displacement field, incorporating interactions via a Hartree-Fock approximation. At half-filling, ferromagnetic insulators are stabilized with valley Chern number . Upon doping, ferromagnetic fluctuations are argued to lead to spin-triplet superconductivity from pairing between opposite valleys. We highlight a novel orbital effect arising from in-plane fields plays an important role in interpreting experiments. Combined with recent experimental findings, our results establish TDBG as a tunable platform to realize rare phases in conventional solids.
Exceptional points in non-Hermitian systems have recently been shown to possess nontrivial topological properties, and to give rise to many exotic physical phenomena. However, most studies thus far have focused on isolated exceptional points or one-dimensional lines of exceptional points. Here, we substantially expand the space of exceptional systems by designing two-dimensional surfaces of exceptional points, and find that symmetries are a key element to protect such exceptional surfaces. We construct them using symmetry-preserving non-Hermitian deformations of topological nodal lines, and analyze the associated symmetry, topology, and physical consequences. As a potential realization, we simulate a parity-time-symmetric 3D photonic crystal and indeed find the emergence of exceptional surfaces. Our work paves the way for future explorations of systems of exceptional points in higher dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.