The Internet of Things applications have become popular because of their lightweight nature and usefulness, which require low latency and response time. Hence, Internet of Things applications are deployed with the fog management layer (software) in closely located edge servers (hardware) as per the requirements. Due to their lightweight properties, Internet of Things applications do not consume many computing resources. Therefore, it is common that a small-scale data center can accommodate thousands of Internet of Things applications. However, in small-scale fog computing environments, task scheduling of applications is limited to offering low latency and response times. In this paper, we propose a latency-aware task scheduling method for Internet of Things applications based on artificial intelligence in small-scale fog computing environments. The core concept of the proposed task scheduling is to use artificial neural networks with partitioning capabilities. With the partitioning technique for artificial neural networks, multiple edge servers are able to learn and calculate hyperparameters in parallel, which reduces scheduling times and service level objectives. Performance evaluation with state-of-the-art studies shows the effectiveness and efficiency of the proposed task scheduling in small-scale fog computing environments while introducing negligible energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.