Background PTEN-induced kinase 1 (PINK1) is a serine/threonine-protein kinase in mitochondria that is critical for mitochondrial quality control. PINK1 triggers mitophagy, a selective autophagy of mitochondria, and is involved in mitochondrial regeneration. Although increments of mitochondrial biogenesis and activity are known to be crucial during differentiation, data regarding the specific role of PINK1 in osteogenic maturation and bone remodeling are limited. Methods We adopted an ovariectomy model in female wildtype and Pink1−/− mice. Ovariectomized mice were analyzed using micro-CT, H&E staining, Masson’s trichrome staining. RT-PCR, western blot, immunofluorescence, alkaline phosphatase, and alizarin red staining were performed to assess the expression of PINK1 and osteogenic markers in silencing of PINK1 MC3T3-E1 cells. Clinical relevance of PINK1 expression levels was determined via qRT-PCR analysis in normal and osteoporosis patients. Results A significant decrease in bone mass and collagen deposition was observed in the femurs of Pink1−/− mice after ovariectomy. Ex vivo, differentiation of osteoblasts was inhibited upon Pink1 downregulation, accompanied by impaired mitochondrial homeostasis, increased mitochondrial reactive oxygen species production, and defects in mitochondrial calcium handling. Furthermore, PINK1 expression was reduced in bones from patients with osteoporosis, which supports the practical role of PINK1 in human bone disease. Conclusions In this study, we demonstrated that activation of PINK1 is a requisite in osteoblasts during differentiation, which is related to mitochondrial quality control and low reactive oxygen species production. Enhancing PINK1 activity might be a possible treatment target in bone diseases as it can promote a healthy pool of functional mitochondria in osteoblasts.
Background: The morphology and alignment of the patellofemoral joint are crucial risk factors for patellar instability, and the incidence of acute primary patellar dislocation is the highest in women in their second decade of life. The purpose of the study was to analyze age and gender variations of the patellofemoral joint using magnetic resonance imaging (MRI). Methods: A total of 852 patients aged between 4 and 18 years with a history of knee MRI examinations were screened for eligibility and 663 patients (470 males, 193 females) were included. Patients were divided into groups according to age and sex. The age group was divided into five groups (Group 1, 4–6 years; Group 2, 7–9 years; Group 3, 10–12 years; Group 4, 13–15 years; and Group 5, 16–18 years). Three orthopaedic surgeons measured MRI parameters reflecting the patellofemoral morphology (sulcus angle, lateral trochlear inclination, trochlear facet symmetry, and femoral depth) and alignment (tibial tuberosity–trochlear groove distance, percent sulcus location, and percent tibia tuberosity location). Results: Parameters including tibial tuberosity–trochlear groove distance, sulcus angle, percent tibial tuberosity location, trochlear facet symmetry, and femoral depth showed significant differences between the age groups (p < 0.05). The sulcus angle decreased fin Group 2, and the femoral depth showed an increasing trend with aging in male patients. However, the sulcus angle in females decreased first and then increased in Group 3 as the inflection point. The femoral depth showed an opposite pattern. Conclusions: Patellofemoral morphometry showed age and gender variation. Notably, the sulcus angle and femoral depth were significantly different between males and females and changed according to the development. These findings may reflect the sex difference and peak incidence of the patellar instability risk. Understanding the morphological changes and differences of the patellofemoral joint may facilitate the diagnosis of patellofemoral pathologies.
Background This study aimed to discover the most stable outcome among different Kirschner-wire (K-wire) configurations for fixation of a lateral condyle fracture (Milch type II) in different loads of stress by using finite element analyses (FEA). Methods The right humerus of a 6-year-old boy with a lateral condyle fracture (Milch type II), was modelled with a computer aided engineering. Using FEA, peak von Mises stress and stiffness were evaluated first for a single K-wire fixation by varying the angle (0, 5, 10, 15, 20, 25, 30 degrees). Then, based on the single K-wire result, assessment of peak von Mises stress and stiffness were evaluated via FEA for two- or three-wire fixation under various configurations (two convergent, two parallel, three divergent). Results Single K-wire fixation by 5 and 25 degrees had the lowest peak von Mises stress. The fracture site showed higher stiffness at 0, 5 and 15 degrees. Considering the collected results and clinical situation, 5 degree K-wire was selected for the FEA of multiple K-wire fixation. For multiple K-wire fixation, three divergent (5–20-35 degrees) K-wires showed better stability, both in peak von Mises stress and stiffness, than any two-K-wire configurations. Among two K-wire fixations, two divergent (5–50 degrees) K-wires provided the lowest von Mises stress in varus and valgus while two divergent (5–65 degrees) K-wires showed better results in flexion, extension, internal and external rotation, and both configurations showed similar results in stiffness. Conclusions We successfully created a paediatric lateral condyle fracture (Milch type II) model which was used to conduct FEA on different K-wire configurations to achieve stability of the fracture. Our results show that an initial K-wire inserted at 5 degrees, followed by the insertion of a second divergent wire at either 45 or 60 degrees provides the most stability in two K-wire fixations in this type of fracture repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.