Sleep behaviors are observed even in nematodes and arthropods, yet little is known about how sleep-regulatory mechanisms have emerged during evolution. Here, we report a sleep-like state in the cnidarian Hydra vulgaris with a primitive nervous organization. Hydra sleep was shaped by homeostasis and necessary for cell proliferation, but it lacked free-running circadian rhythms. Instead, we detected 4-hour rhythms that might be generated by ultradian oscillators underlying Hydra sleep. Microarray analysis in sleep-deprived Hydra revealed sleep-dependent expression of 212 genes, including cGMP-dependent protein kinase 1 (PRKG1) and ornithine aminotransferase. Sleep-promoting effects of melatonin, GABA, and PRKG1 were conserved in Hydra. However, arousing dopamine unexpectedly induced Hydra sleep. Opposing effects of ornithine metabolism on sleep were also evident between Hydra and Drosophila, suggesting the evolutionary switch of their sleep-regulatory functions. Thus, sleep-relevant physiology and sleep-regulatory components may have already been acquired at molecular levels in a brain-less metazoan phylum and reprogrammed accordingly.
Circadian transcriptional timekeepers in pacemaker neurons drive profound daily rhythms in sleep and wake. Here we reveal a molecular pathway that links core transcriptional oscillators to neuronal and behavioral rhythms. Using two independent genetic screens, we identified mutants of Transport and Golgi organization 10 (Tango10) with poor behavioral rhythmicity. Tango10 expression in pacemaker neurons expressing the neuropeptide PIGMENT-DISPERSING FACTOR (PDF) is required for robust rhythms. Loss of Tango10 results in elevated PDF accumulation in nerve terminals even in mutants lacking a functional core clock. TANGO10 protein itself is rhythmically expressed in PDF terminals. Mass spectrometry of TANGO10 complexes reveals interactions with the E3 ubiquitin ligase CULLIN 3 (CUL3). CUL3 depletion phenocopies Tango10 mutant effects on PDF even in the absence of the core clock gene timeless. Patch clamp electrophysiology in Tango10 mutant neurons demonstrates elevated spontaneous firing potentially due to reduced voltage-gated Shaker-like potassium currents. We propose that Tango10/Cul3 transduces molecular oscillations from the core clock to neuropeptide release important for behavioral rhythms.
Translating ribosomes accompany co-translational regulation of nascent polypeptide chains, including subcellular targeting, protein folding, and covalent modifications. Ribosome-associated quality control (RQC) is a co-translational surveillance mechanism triggered by ribosomal collisions, an indication of atypical translation. The ribosome-associated E3 ligase ZNF598 ubiquitinates small subunit proteins at the stalled ribosomes. A series of RQC factors are then recruited to dissociate and triage aberrant translation intermediates. Regulatory ribosomal stalling may occur on endogenous transcripts for quality gene expression, whereas ribosomal collisions are more globally induced by ribotoxic stressors such as translation inhibitors, ribotoxins, and UV radiation. The latter are sensed by ribosome-associated kinases GCN2 and ZAKα, activating integrated stress response (ISR) and ribotoxic stress response (RSR), respectively. Hierarchical crosstalks among RQC, ISR, and RSR pathways are readily detectable since the collided ribosome is their common substrate for activation. Given the strong implications of RQC factors in neuronal physiology and neurological disorders, the interplay between RQC and ribosome-associated stress signaling may sustain proteostasis, adaptively determine cell fate, and contribute to neural pathogenesis. The elucidation of underlying molecular principles in relevant human diseases should thus provide unexplored therapeutic opportunities. [BMB Reports 2021; 54(9): 439-450]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.