Bimanual coordination is common in human daily life, whereas current research focused mainly on decoding unimanual movement from electroencephalogram (EEG) signals. Here we developed a brain-computer interface (BCI) paradigm of task-oriented bimanual movements to decode coordinated directions from movement-related cortical potentials (MRCPs) of EEG. Eight healthy subjects participated in the target-reaching task, including (1) performing leftward, midward, and rightward bimanual movements, and (2) performing leftward and rightward unimanual movements. A combined deep learning model of convolution neural network and bidirectional long short-term memory network was proposed to classify movement directions from EEG. Results showed that the average peak classification accuracy for three coordinated directions of bimanual movements reached 73.39 ± 6.35%. The binary classification accuracies achieved 80.24 ± 6.25, 82.62 ± 7.82, and 86.28 ± 5.50% for leftward versus midward, rightward versus midward and leftward versus rightward, respectively. We also compared the binary classification (leftward versus rightward) of bimanual, left-hand, and right-hand movements, and accuracies achieved 86.28 ± 5.50%, 75.67 ± 7.18%, and 77.79 ± 5.65%, respectively. The results indicated the feasibility of decoding human coordinated directions of task-oriented bimanual movements from EEG.
Robot-assisted bimanual training is promising to improve motor function and cortical reorganization for hemiparetic stroke patients. Closing the rehabilitation training loop with neurofeedback can help refine training protocols in time for better engagements and outcomes. However, due to the low signal-to-noise ratio (SNR) and non-stationary properties of neural signals, reliable characterization of bimanual training-induced neural activities from single-trial measurement is challenging. In this study, ten human participants were recruited conducting robot-assisted bimanual cyclical tasks (in-phase, 90 • out-of-phase, and anti-phase) when concurrent electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) were recorded. A unified EEG-fNIRS bimodal signal processing framework was proposed to characterize neural activities induced by three types of bimanual cyclical tasks. In this framework, novel artifact removal methods were used to improve the SNR and the task-related component analysis (TRCA) was introduced to increase the reproducibility of EEG-fNIRS bimodal features. The optimized features were transformed into lowdimensional indicators to reliably characterize bimanual training-induced neural activation. The SVM classification results of three bimanual cyclical tasks revealed a good discrimination ability of EEG-fNIRS bimodal indicators (90.1%), which was higher than that using EEG (74.8%) or fNIRS (82.2%) alone, supporting the proposed method as a feasible technique to characterize neural activities during robotassisted bimanual training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.