SummaryArabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper class I (HDZip I) gene, is highly expressed in leaves and stems, and induced by abiotic stresses, but its role in development remains obscure.To understand its function during plant development, we studied the effects of loss and gain of function. Expression of ATHB12 fused to the EAR-motif repression domain (SRDX) -P 35S ::ATHB12SRDX (A12SRDX) and P ATHB12 ::ATHB12SRDX -slowed both leaf and root growth, while the growth of ATHB12-overexpressing seedlings (A12OX) was accelerated.Microscopic examination revealed changes in the size and number of leaf cells. Ploidy was reduced in A12SRDX plants, accompanied by decreased cell expansion and increased cell numbers. By contrast, cell size was increased in A12OX plants, along with increased ploidy and elevated expression of cell cycle switch 52s (CCS52s), which are positive regulators of endoreduplication, indicating that ATHB12 promotes leaf cell expansion and endoreduplication. Overexpression of ATHB12 led to decreased phosphorylation of Arabidopsis thaliana ribosomal protein S6 (AtRPS6), a regulator of cell growth. In addition, induction of ATHB12 in the presence of cycloheximide increased the expression of several genes related to cell expansion, such as EXPANSIN A10 (EXPA10) and DWARF4 (DWF4).Our findings strongly suggest that ATHB12 acts as a positive regulator of endoreduplication and cell growth during leaf development.
Arabidopsis thaliana homeobox 12 (ATHB12) is rapidly induced by ABA and water stress. A T-DNA insertion mutant of ATHB12 with a reduced level of ATHB12 expression in stems had longer inflorescence stems and reduced sensitivity to ABA during germination. A high level of transcripts of gibberellin 20-oxidase 1 (GA20ox1), a key enzyme in the synthesis of gibberellins, was detected in athb12 stems, while transgenic lines overexpressing ATHB12 (A12OX) had a reduced level of GA20ox1 in stems. Consistent with these data, ABA treatment of wild-type plants resulted in decreased GA20ox1 expression whereas ABA treatment of the athb12 mutant gave rise to slightly decreased GA20ox1 expression. Retarded stem growth in 3-week-old A12OX plants was rescued by exogenous GA(9), but not by GA(12), and less GA(9) was detected in A12OX stems than in wild-type stems. These data imply that ATHB12 decreases GA20ox1 expression in stems. On the other hand, the stems of A12OX plants grew rapidly after the first 3 weeks, so that they were almost as high as wild-type plants at about 5 weeks after germination. We also found changes in the stems of transgenic plants overexpressing ATHB12, such as alterations of expression GA20ox and GA3ox genes, and of GA(4) levels, which appear to result from feedback regulation. Repression of GA20ox1 by ATHB12 was confirmed by transfection of leaf protoplasts. ABA-treated protoplasts also showed increased ATHB12 expression and reduced GA20ox1 expression. These findings all suggest that ATHB12 negatively regulates the expression of a GA 20-oxidase gene in inflorescence stems.
Soluble invertase was purified from pea (Pisum sativum L.) by sequential procedures entailing ammonium sulfate precipitation, DEAE-Sepharose column, Con-A- and Green 19-Sepharose affinity columns, hydroxyapatite column, ultra-filtration, and Sephacryl 300 gel filtration. The purified soluble acid (SAC) and alkaline (SALK) invertases had a pH optimum of 5.3 and 7.3, respectively. The temperature optimum of two invertases was 37 degrees C. The effects of various concentrations of Tris-HCl, HgCl(2), and CuSO(4) on the activities of the two purified enzymes were examined. Tris-HCl and HgCl(2) did not affect SAC activity, whereas 10 mM Tris-HCl and 0.05 mM HgCl(2) inhibited SALK activity by about 50%. SAC and SALK were inhibited by 4.8 mM and 0.6 mM CuSO(4) by 50%, respectively. The enzymes display typical hyperbolic saturation kinetics for sucrose hydrolysis. The Kms of SAC and SALK were determined to be 1.8 and 38.6 mM, respectively. The molecular masses of SAC shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting were 22 kDa and 45 kDa. The molecular mass of SALK was 30 kDa. Iso-electric points of the SAC and SALK were estimated to be about pH 7.0 and pH 5.7, respectively.
Invertase (EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Insoluble acid invertase (INAC-INV) was purified from pea (Pisum sativum L.) by sequential procedures entailing ammonium sulfate precipitation, ion exchange chromatography, absorption chromatography, reactive green-19 affinity chromatography, and gel filtration. The purified INAC-INV had a pH optimum of 4.0 and a temperature optimum of 45 °C. The effects of various concentrations of Tris-HCl, HgCl 2 , and CuSO 4 on the activities of the purified invertase were examined. INAC-INV was not affected by Tris-HCl and HgCl 2 . INAC-INV activity was inhibited by 6.2 mM CuSO 4 up to 50%. The enzymes display typical hyperbolic saturation kinetics for sucrose hydrolysis. The K m and V max values of INAC-INV were determined to be 4.41 mM and 8.41 U (mg protein) À1 min À1 , respectively. INAC-INV is a true member of the β-fructofuranosidases, which can react with sucrose and raffinose as substrates. SDS-PAGE and immunoblotting were used to determine the molecular mass of INAC-INV to be 69 kDa. The isoelectric point of INAC-INV was estimated to be about pH 8.0. Taken together, INAC-INV is a pea seedling invertase with a stable and optimum activity at lower acid pH and at higher temperature than other invertases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.