Osteoarthritis (OA) is a type of joint disease associated with wear and tear, inflammation, and aging. Mechanical stress along with synovial inflammation promotes the degradation of the extracellular matrix in the cartilage, leading to the breakdown of joint cartilage. The nuclear factor-kappaB (NF-B) transcription factor has long been recognized as a disease-contributing factor and, thus, has become a therapeutic target for OA. Because NF-B is a versatile and multi-functional transcription factor involved in various biological processes, a comprehensive understanding of the functions or regulation of NF-B in the OA pathology will aid in the development of targeted therapeutic strategies to protect the cartilage from OA damage and reduce the risk of potential side-effects. In this review, we discuss the roles of NF-B in OA chondrocytes and related signaling pathways, including recent findings, to better understand pathological cartilage remodeling and provide potential therapeutic targets that can interfere with NF-B signaling for OA treatment.
Vibrio vulnificus causes fatal infections in humans, and antibiotics are commonly used in treatment regimens against V. vulnificus infection. However, the therapeutic effects of antibiotics are limited by multidrug resistance. In this study, we demonstrated that an antimicrobial peptide (AMP), HPA3PHis, loaded onto a gold nanoparticle-DNA aptamer (AuNP-Apt) conjugate (AuNP-Apt-HPA3PHis) is an effective therapeutic tool against V. vulnificus infection in vivo in mice. HPA3PHis induced bacterial cell death through the disruption of membrane integrity of V. vulnificus. The introduction of AuNP-Apt-HPA3PHis into V. vulnificus-infected HeLa cells dramatically reduced intracellular V. vulnificus by 90%, leading to an increase in the viability of the infected cells. Moreover, when V. vulnificus-infected mice were intravenously injected with AuNP-Apt-HPA3PHis, a complete inhibition of V. vulnificus colonization was observed in the mouse organs, leading to a 100% survival rate among the treated mice, whereas all the control mice died within 40 hours of being infected. Therefore, this study demonstrated the potential of an AMP delivered by AuNP-Apt as an effective and rapid treatment option against infection caused by a major pathogen in humans and aquatic animals.
Antimicrobial peptides (AMPs) are promising therapeutic agents for treating antibiotic-resistant bacterial infections. Previous studies showed that magainin 2 (isolated from African clawed fogs Xenopus laevis) has antimicrobial activity against gram-positive and gram-negative bacteria. The present study was conducted to investigate the antibacterial activity of magainin 2 against Acinetobacter baumannii. Magainin 2 showed excellent antibacterial activity against A. baumannii strains and high stability at physiological salt concentrations. This peptide was not cytotoxic towards HaCaT cells and showed no hemolytic activity. Biofilm inhibition and elimination were significantly induced in all A. baumannii strains exposed to magainin 2. We confirmed the mechanism of magainin 2 on the bacterial outer and inner membranes. Collectively, these results suggest that magainin 2 is an effective antimicrobial and antibiofilm agent against A. baumannii strains.
The rapid increase in the emergence of antifungal-resistant Candida albicans strains is becoming a serious health concern. Because antimicrobial peptides (AMPs) may provide a potential alternative to conventional antifungal agents, we have synthesized a series of peptides with a varying number of lysine and tryptophan repeats (KWn-NH2). The antifungal activity of these peptides increased with peptide length, but only the longest KW5 peptide displayed cytotoxicity towards a human keratinocyte cell line. The KW4 and KW5 peptides exhibited strong antifungal activity against C. albicans, even under conditions of high-salt and acidic pH, or the addition of fungal cell wall components. Moreover, KW4 inhibited biofilm formation by a fluconazole-resistant C. albicans strain. Circular dichroism and fluorescence spectroscopy indicated that fungal liposomes could interact with the longer peptides but that they did not release the fluorescent dye calcein. Subsequently, fluorescence assays with different dyes revealed that KW4 did not disrupt the membrane integrity of intact fungal cells. Scanning electron microscopy showed no changes in fungal morphology, while laser-scanning confocal microscopy indicated that KW4 can localize into the cytosol of C. albicans. Gel retardation assays revealed that KW4 can bind to fungal RNA as a potential intracellular target. Taken together, our data indicate that KW4 can inhibit cellular functions by binding to RNA and DNA after it has been translocated into the cell, resulting in the eradication of C. albicans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.