Highlights d Deep profiling of proteome and phosphoproteome in AD progression d Validation of protein alterations in two independent AD cohorts d Identification of Ab-induced protein changes in AD and the 5xFAD mouse model d Prioritization of proteins and pathways in AD by multi-omics
A photoplethysmography (PPG) signal provides very useful information about a subject's hemodynamic status in a hospital or ubiquitous environment. However, PPG is very vulnerable to motion artifacts, which can significantly distort the information belonging to the PPG signal itself. Thus, the reduction of the effects of motion artifacts is an important issue when monitoring the cardiovascular system by PPG. There have been many adaptive techniques to reduce motion artifacts from PPG signals. In the present study, we compared a method based on the fixed-interval Kalman smoother with the usual adaptive filtering algorithms, e.g. the normalized least mean squares, recursive least squares and the conventional Kalman filter. We found that the fixed-interval Kalman smoother reduced motion artifacts from the PPG signal most effectively. Therefore, the use of the fixed-interval Kalman smoother can reduce motion artifacts in PPG, thus providing the most reliable information that can be deduced from the reconstructed PPG signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.