The health threat of arsenic is well-known, and the U.S. EPA recommends the maximum contaminant level to be 0.01 ppm or less for arsenic in drinking water. Therefore, advanced treatment processes are needed for finished water to meet the required regulations. Adsorption is considered to be a less expensive procedure that is safer to handle than precipitation, ion exchange, and membrane filtration. Activated alumina (AA) is the most commonly used adsorbent for the removal of arsenic from aqueous solutions. However, conventional porous solids including AA have ill-defined pore structures and, typically, low adsorption capacities and act in a kinetically slow manner. An ideal adsorbent should have uniformly accessible pores, an interlinked pore system, a high surface area, and physical and/or chemical stability. To meet this requirement, mesoprous alumina (MA) with a wide surface area (307 m2/g) and uniform pore size (3.5 nm) was prepared, and a spongelike interlinked pore system was developed through a post-hydrolysis method. The resulting MA was insoluble and stable within the range of pH 3-7. The maximum uptake of As(V) by MA was found to be 7 times higher [121 mg of As(V)/g and 47 mg of As(III)/ g] than that of conventional AA, and the kinetics of adsorption were also rapid with complete adsorption in less than 5 h as compared to the conventional AA (about 2 d to reach half of the equilibrium value). A desorption study using sodium hydroxide solutions (0.01-1 M) was conducted, and 0.05 M NaOH was found to be the most suitable desorption agent. More than 85% of the arsenic adsorbed to the MA was desorbed in less than 1 h. Several other activated aluminas with different pore properties were also tested. The results show that the surface area of the adsorbents does not greatly influence on the adsorption capacity. In fact, the key factor is a uniform pore size and an interlinked pore system. These studies show that MA with a wide surface area, uniform pore size, and interlinked pore system can be used as an efficient adsorbent for the removal of arsenic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.