Streptococcus mutans is a key contributor to the formation of the extracellular polysaccharide (EPS) matrix in dental biofilms. The exopolysaccharides, which are mostly glucans synthesized by streptococcal glucosyltransferases (Gtfs), provide binding sites that promote accumulation of microorganisms on the tooth surface and further establishment of pathogenic biofilms. This study explored (i) the role of S. mutans Gtfs in the development of the EPS matrix and microcolonies in biofilms, (ii) the influence of exopolysaccharides on formation of microcolonies, and (iii) establishment of S. mutans in a multispecies biofilm in vitro using a novel fluorescence labeling technique. Our data show that the ability of S. mutans strains defective in the gtfB gene or the gtfB and gtfC genes to form microcolonies on saliva-coated hydroxyapatite surfaces was markedly disrupted. However, deletion of both gtfB (associated with insoluble glucan synthesis) and gtfC (associated with insoluble and soluble glucan synthesis) is required for the maximum reduction in EPS matrix and biofilm formation. S. mutans grown with sucrose in the presence of Streptococcus oralis and Actinomyces naeslundii steadily formed exopolysaccharides, which allowed the initial clustering of bacterial cells and further development into highly structured microcolonies. Concomitantly, S. mutans became the major species in the mature biofilm. Neither the EPS matrix nor microcolonies were formed in the presence of glucose in the multispecies biofilm. Our data show that GtfB and GtfC are essential for establishment of the EPS matrix, but GtfB appears to be responsible for formation of microcolonies by S. mutans; these Gtf-mediated processes may enhance the competitiveness of S. mutans in the multispecies environment in biofilms on tooth surfaces.Oral diseases related to dental biofilms afflict the majority of the world's population, and dental caries is still the single most prevalent and costly oral infectious disease (12, 32). Dental caries results from the interaction of specific bacteria with constituents of the diet within a biofilm formed on the tooth surface known as plaque (5,36). Streptococcus mutans is a key contributor to the formation of biofilms associated with dental caries disease, although other microorganisms may also be involved (3); S. mutans (i) effectively utilizes dietary sucrose (and possibly starch) to rapidly synthesize exopolysaccharides (EPS) using glucosyltransferases and a fructosyltransferase that adsorb to surfaces, (ii) adheres tenaciously to glucan-coated surfaces, and (iii) is acidogenic and acid tolerant (5, 30).In general, biofilms develop after initial attachment of microbes to a surface, followed by formation of highly structured cell clusters (or microcolonies) and further development and stabilization of the microcolonies, which are in a complex extracellular matrix (6, 49). The majority of biofilm matrices contain exopolysaccharides, and dental biofilms are no exception; up to 40% of the dry weight of dental plaque is compos...
Dental caries is the most prevalent and costly oral infectious disease worldwide. Virulent biofilms firmly attached to tooth surfaces are prime biological factors associated with this disease. The formation of an exopolysaccharide-rich biofilm matrix, acidification of the milieu and persistent low pH at the tooth-biofilm interface are major controlling virulence factors that modulate dental caries pathogenesis. Each one offers a selective therapeutic target for prevention. Although fluoride, delivered in various modalities, remains the mainstay for the prevention of caries, additional approaches are required to enhance its effectiveness. Available antiplaque approaches are based on the use of broad-spectrum microbicidal agents, e.g. chlorhexidine. Natural products offer a rich source of structurally diverse substances with a wide range of biological activities, which could be useful for the development of alternative or adjunctive anticaries therapies. However, it is a challenging approach owing to complex chemistry and isolation procedures to derive active compounds from natural products. Furthermore, most of the studies have been focused on the general inhibitory effects on glucan synthesis as well as on bacterial metabolism and growth, often employing methods that do not address the pathophysiological aspects of the disease (e.g. bacteria in biofilms) and the length of exposure/retention in the mouth. Thus, the true value of natural products in caries prevention and/or their exact mechanisms of action remain largely unknown. Nevertheless, natural substances potentially active against virulent properties of cariogenic organisms have been identified. This review focuses on gaps in the current knowledge and presents a model for investigating the use of natural products in anticaries chemotherapy.
Radioactive iodine-labeled, cyclic RGD-PEGylated gold nanoparticle (AuNP) probes are designed and synthesized for targeting cancer cells and imaging tumor sites. These iodine-125-labeled cRGD-PEG-AuNP probes are stable in various conditions including a range of pHs and high salt and temperature conditions. These probes can target selectively and be taken up by tumor cells via integrin αvβ3-receptor-mediated endocytosis with no cytotoxicity. The probes show a significant increase in the avidity of αvβ3 integrin compared to the corresponding free cRGD peptides. In-vivo SPECT/CT imaging results show that the iodine-125-labeled cRGD-PEG-AuNP probes can target the tumor site as soon as 10 min after injection, and also that cyclic RGD peptides are needed for efficient and long-term in-vivo monitoring. The results suggest that the probes circulate through the whole body, including renal filtration, and are excretable. These promising results show that radioactive-iodine-labeled gold nanoprobes have potential for highly specific and sensitive tumor imaging or for use as angiogenesis-targeted SPECT/CT imaging probes.
A thrombus (blood clot) is formed in injured vessels to maintain the integrity of vasculature. However, obstruction of blood vessels by thrombosis slows blood flow, leading to death of tissues fed by the artery and is the main culprit of various life-threatening cardiovascular diseases. Herein, we report a rationally designed nanomedicine that could specifically image obstructed vessels and inhibit thrombus formation. On the basis of the physicochemical and biological characteristics of thrombi such as an abundance of fibrin and an elevated level of hydrogen peroxide (HO), we developed a fibrin-targeted imaging and antithrombotic nanomedicine, termed FTIAN, as a theranostic system for obstructive thrombosis. FTIAN inhibited the generation of HO and suppressed the expression of tumor necrosis factor-alpha (TNF-α) and soluble CD40 ligand (sCD40L) in activated platelets, demonstrating its intrinsic antioxidant, anti-inflammatory, and antiplatelet activity. In a mouse model of ferric chloride (FeCl)-induced carotid thrombosis, FTIAN specifically targeted the obstructive thrombus and significantly enhanced the fluorescence/photoacoustic signal. When loaded with the antiplatelet drug tirofiban, FTIAN remarkably suppressed thrombus formation. Given its thrombus-specific imaging along with excellent therapeutic activities, FTIAN offers tremendous translational potential as a nanotheranostic agent for obstructive thrombosis.
An 18F-labeled caspase-3 sensitive nano-aggregation PET tracer ([18F]CSNAT) was prepared and evaluated for imaging caspase-3 activity in doxorubicin-treated tumor xenografts. This enzyme-activatable PET tracer is designed to function in a novel mechanism – enhanced retention of the 18F activity in apoptotic tumors is achieved through intramolecular macrocyclization and in situ aggregation upon caspase-3 activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.