An elbow wall thinning diagnosis method by highlighting the stationary characteristics of the operating loop is proposed. The accelerations of curved pipe surfaces were measured in a closed test loop operating at a constant pump rpm, combined with curved pipe specimens with artificial wall thinning. The vibration characteristics of wall-thinned elbows were extracted by using a mel-spectrogram in which modal characteristic variation shifting can be expressed. To reduce the deviation of the model’s prediction values, the ensemble mean value of the mel-spectrogram was used to emphasize stationary signals and reduce noise signals. A convolutional neural network (CNN) regression model with residual blocks was proposed and showed improved performance compared to the models without the residual block. The proposed regression model predicted the thinning thickness of the elbow excluded in training dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.