Dense video captioning is an extremely challenging task since accurate and coherent description of events in a video requires holistic understanding of video contents as well as contextual reasoning of individual events. Most existing approaches handle this problem by first detecting event proposals from a video and then captioning on a subset of the proposals. As a result, the generated sentences are prone to be redundant or inconsistent since they fail to consider temporal dependency between events. To tackle this challenge, we propose a novel dense video captioning framework, which models temporal dependency across events in a video explicitly and leverages visual and linguistic context from prior events for coherent storytelling. This objective is achieved by 1) integrating an event sequence generation network to select a sequence of event proposals adaptively, and 2) feeding the sequence of event proposals to our sequential video captioning network, which is trained by reinforcement learning with two-level rewards-at both event and episode levels-for better context modeling. The proposed technique achieves outstanding performances on Ac-tivityNet Captions dataset in most metrics.
We present a framework to analyze various aspects of models for video question answering (VideoQA) using customizable synthetic datasets, which are constructed automatically from gameplay videos. Our work is motivated by the fact that existing models are often tested only on datasets that require excessively high-level reasoning or mostly contain instances accessible through single frame inferences. Hence, it is difficult to measure capacity and flexibility of trained models, and existing techniques often rely on adhoc implementations of deep neural networks without clear insight into datasets and models. We are particularly interested in understanding temporal relationships between video events to solve VideoQA problems; this is because reasoning temporal dependency is one of the most distinct components in videos from images. To address this objective, we automatically generate a customized synthetic VideoQA dataset using Super Mario Bros. gameplay videos so that it contains events with different levels of reasoning complexity. Using the dataset, we show that properly constructed datasets with events in various complexity levels are critical to learn effective models and improve overall performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.