Although interest in indoor space modeling is increasing, the quantity of indoor spatial data available is currently very scarce compared to its demand. Many studies have been carried out to acquire indoor spatial information from floorplan images because they are relatively cheap and easy to access. However, existing studies do not take international standards and usability into consideration, they consider only 2D geometry. This study aims to generate basic data that can be converted to indoor spatial information using IndoorGML (Indoor Geography Markup Language) thick wall model or the CityGML (City Geography Markup Language) level of detail 2 by creating vector-formed data while preserving wall thickness. To achieve this, recent Convolutional Neural Networks are used on floorplan images to detect wall and door pixels. Additionally, centerline and corner detection algorithms were applied to convert wall and door images into vector data. In this manner, we obtained high-quality raster segmentation results and reliable vector data with node-edge structure and thickness attributes that enabled the structures of vertical and horizontal wall segments and diagonal walls to be determined with precision. Some of the vector results were converted into CityGML and IndoorGML form and visualized, demonstrating the validity of our work.
Abstract:A critical problem in mapping data is the frequent updating of large data sets. To solve this problem, the updating of small-scale data based on large-scale data is very effective. Various map generalization techniques, such as simplification, displacement, typification, elimination, and aggregation, must therefore be applied. In this study, we focused on the elimination and aggregation of the building layer, for which each building in a large scale was classified as "0-eliminated," "1-retained," or "2-aggregated." Machine-learning classification algorithms were then used for classifying the buildings. The data of 1:1000 scale and 1:25,000 scale digital maps obtained from the National Geographic Information Institute were used. We applied to these data various machine-learning classification algorithms, including naive Bayes (NB), decision tree (DT), k-nearest neighbor (k-NN), and support vector machine (SVM). The overall accuracies of each algorithm were satisfactory: DT, 88.96%; k-NN, 88.27%; SVM, 87.57%; and NB, 79.50%. Although elimination is a direct part of the proposed process, generalization operations, such as simplification and aggregation of polygons, must still be performed for buildings classified as retained and aggregated. Thus, these algorithms can be used for building classification and can serve as preparatory steps for building generalization.
Semantic search recently been used in the search field. POI is one of the most essential information that make up the geographic information, and many of the geographic information system has POI search function as a basic. In this study, we propose POI semantic search using collective intelligence. For this, we designed and implemented service that constructs empirical information from tag and image, and provides an intuitive spatial navigation experience. For POI search, collective intelligence platform that many users can participate to collect variety information was designed and implemented. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.