Over the past few years, various indexes have been redesigned for byte-addressable persistent memory. In this work, we design and implement PB+tree (Pivotal B+tree) that resolves the limitations of state-of-the-art fully persistent B+trees. First, PB+tree reduces the number of expensive shift operations by up to half by managing two sub-arrays separated by a pivot key. Second, PB+tree reads cachelines in ascending order, which makes PB+tree benefit from hardware prefetchers and run faster than state-of-the-art persistent B+trees that access cachelines in non-contiguous or descending order. Third, PB+tree employs an optimistic lock-free search algorithm to avoid repeatedly visiting the same tree node. Although the optimistic lock-free search algorithm involves a risk of visiting incorrect child nodes, PB+tree guarantees correct search results using the lazy correction algorithm using doubly linked sibling pointers. Our performance study shows that PB+tree outperforms the state-of-the-art fully persistent indexes by a large margin. A search algorithm without optimistic locking risks visiting the wrong child node, but PB+tree uses a lazy correction algorithm with doubly linked sibling pointers to ensure correct search results. Our performance studies show that PB+trees outperform state-of-the-art fully persistent indexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.