Numerous approaches have been introduced to regenerate artificial dental tissues. However, conventional approaches are limited when producing a construct with three-dimensional patient-specific shapes and compositions of heterogeneous dental tissue. In this research, bioprinting technology was applied to produce a three-dimensional dentin–pulp complex with patient-specific shapes by inducing localized differentiation of human dental pulp stem cells within a single structure. A fibrin-based bio-ink was designed for bioprinting with the human dental pulp stem cells. The effects of fibrinogen concentration within the bio-ink were investigated in terms of printability, human dental pulp stem cell compatibility, and differentiation. The results show that micro-patterns with human dental pulp stem cells could be achieved with more than 88% viability. Its odontogenic differentiation was also regulated according to the fibrinogen concentration. Based on these results, a dentin–pulp complex having patient-specific shape was produced by co-printing the human dental pulp stem cell–laden bio-inks with polycaprolactone, which is a bio-thermoplastic used for producing the overall shape. After culturing with differentiation medium for 15 days, localized differentiation of human dental pulp stem cells in the outer region of the three-dimensional cellular construct was successfully achieved with localized mineralization. This result demonstrates the possibility to produce patient-specific composite tissues for tooth tissue engineering using three-dimensional bioprinting technology.
Demineralized dentin matrix (DDM)-based materials have been actively developed and are well-known for their excellent performance in dental tissue regeneration. However, DDM-based bio-ink suitable for fabrication of engineered dental tissues that are patient-specific in terms of shape and size, has not yet been developed. In this study, we developed a DDM particle-based bio-ink (DDMp bio-ink) with enhanced three-dimensional (3D) printability. The bio-ink was prepared by mixing DDM particles and a fibrinogen–gelatin mixture homogeneously. The effects of DDMp concentration on the 3D printability of the bio-ink and dental cell compatibility were investigated. As the DDMp concentration increased, the viscosity and shear thinning behavior of the bio-ink improved gradually, which led to the improvement of the ink’s 3D printability. The higher the DDMp content, the better were the printing resolution and stacking ability of the 3D printing. The printable minimum line width of 10% w/v DDMp bio-ink was approximately 252 μm, whereas the fibrinogen–gelatin mixture was approximately 363 μm. The ink’s cytocompatibility test with dental pulp stem cells (DPSCs) exhibited greater than 95% cell viability. In addition, as the DDMp concentration increased, odontogenic differentiation of DPSCs was significantly enhanced. Finally, we demonstrated that cellular constructs with 3D patient-specific shapes and clinically relevant sizes could be fabricated through co-printing of polycaprolactone and DPSC-laden DDMp bio-ink.
In vitro cancer models that can simulate patient-specific drug responses for personalized medicine have attracted significant attention. However, the technologies used to produce such models can only recapitulate the morphological heterogeneity of human cancer tissue. Here, we developed a novel 3D technique to bioprint an in vitro breast cancer model with patient-specific morphological features. This model can precisely mimic the cellular microstructures of heterogeneous cancer tissues and produce drug responses similar to those of human cancers. We established a bioprinting process for generating cancer cell aggregates with ductal and solid tissue microstructures that reflected the morphology of breast cancer tissues, and applied it to develop breast cancer models. The genotypic and phenotypic characteristics of the ductal and solid cancer aggregates bioprinted with human breast cancer cells (MCF7, SKBR3, MDA-MB-231) were respectively similar to those of early and advanced cancers. The bioprinted solid cancer cell aggregates showed significantly higher hypoxia (>8 times) and mesenchymal (>2-4 times) marker expressions, invasion activity (>15 times), and drug resistance than the bioprinted ductal aggregates. Co-printing the ductal and solid aggregates produced heterogeneous breast cancer tissue models that recapitulated three different stages of breast cancer tissue morphology. The bioprinted cancer tissue models representing advanced cancer were more and less resistant, respectively, to the anthracycline antibiotic doxorubicin and the hypoxia-activated prodrug tirapazamine; these were analogous to the results in human cancer. The present findings showed that cancer cell aggregates can mimic the pathological micromorphology of human breast cancer tissue and they can be bioprinted to produce breast cancer tissue in vitro that can morphologically represent the clinical stage of cancer in individual patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.