This paper proposes a novel method for occupancy map building using a mixture of Gaussian processes. Gaussian processes have proven to be highly flexible and accurate for a robotic occupancy mapping problem, yet the high computational complexity has been a critical barrier for large-scale applications. We consider clustering the data into small, manageable subsets and applying a mixture of Gaussian processes. One of the problems in clustering is that the number of groups is not known a priori, thus requiring inputs from experts. We propose two efficient clustering methods utilizing (1) a Dirichlet process and (2) geometrical information in the context of occupancy mapping. We will show that the Dirichlet process-based clustering can significantly speed up the training step of the Gaussian process and if geometrical features, such as line features, are available, they can further improve the clustering accuracy. We will provide simulation results, analyze the performance and demonstrate the benefits of the proposed methods.
This paper introduces a novel method for computationally efficient Gaussian estimation of high-dimensional problems such as Simultaneous Localization and Mapping (SLAM) processes and for treating certain Stochastic Partial Differential Equations (SPDEs). The authors have presented the Generalized Compressed Kalman Filter (GCKF) framework to reduce the computational complexity of the filters by partitioning the state vector into local and global and compressing the global state updates. The compressed state update, however, still suffers from high computational costs, making it challenging to implement on embedded processors. We propose a low-precision numerical representation for the global filter, such as 16-bit integer or 32-bit single-precision formats for the global covariance matrix, instead of the expensive double-precision, floating-point representation (64 bits). This truncation can inevitably cause filter instability since the truncated covariance matrix becomes overoptimistic or even turns to be an invalid covariance matrix. We introduce a Minimal Covariance Inflation (MCI) method to make the filter consistent while minimizing the truncation errors. Simulation-based experiments results show significant improvement of the proposed method with a reduction in the processing time with minimal loss of accuracy.
This paper presents a practical yet effective solution for integrating an RGB-D camera and an inertial sensor to handle the depth dropouts that frequently happen in outdoor environments, due to the short detection range and sunlight interference. In depth drop conditions, only the partial 5-degrees-of-freedom pose information (attitude and position with an unknown scale) is available from the RGB-D sensor. To enable continuous fusion with the inertial solutions, the scale ambiguous position is cast into a directional constraint of the vehicle motion, which is, in essence, an epipolar constraint in multi-view geometry. Unlike other visual navigation approaches, this can effectively reduce the drift in the inertial solutions without delay or under small parallax motion. If a depth image is available, a window-based feature map is maintained to compute the RGB-D odometry, which is then fused with inertial outputs in an extended Kalman filter framework. Flight results from the indoor and outdoor environments, as well as public datasets, demonstrate the improved navigation performance of the proposed approach.
This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles. Existing research has not fully utilised the uncertainty of the optical flow—at most, an isotropic Gaussian density model has been used. We estimate the full uncertainty of the optical flow and propose a new eight-point algorithm based on the statistical Mahalanobis distance. Combined with the pose-graph optimisation, the proposed method demonstrates enhanced robustness and accuracy for the public autonomous car dataset (KITTI) and aerial monocular dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.