Considering a theory of Brans–Dicke gravity with general couplings of Higgs-like bosons including a non-renormalizable term, we derive the low-energy effective theory action in the Universe of a temperature much lower than the Higgs-like boson mass. Necessary equations containing gravitational field equations and an effective potential of the Brans–Dicke scalar field are obtained, which are induced through virtual interactions of the Higgs-like heavy field in the late-time Universe. We find a de Sitter cosmological solution with the inverse power law effective potential of the scalar field and discuss the possibility that the late-time acceleration of our Universe can be naturally explained by means of the solution. We also investigate stability properties of the quintessence model by using a linear approximation.
We study Brans-Dicke cosmology with an inverse power-law effective potential. By using dynamical analyses, we search for fixed points corresponding to the radiationlike matter and dark energy-dominated era of our Universe, and the stability of fixed points is also investigated. We find phase space trajectories which are attracted to the stable point of the dark energy-dominated era from unstable fixed points like matter-dominated era of the Universe. The dark energy comes from effective potentials of the Brans-Dicke field, whose variation (related to the time-variation of the gravitational coupling constant) is shown to be in good agreement with observational data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.