Korea is one of the fastest-growing CO2-emitting countries but has recently experienced a dramatic slowdown in emissions. The objective of the study is to examine the driving factors of long-term increases (1990–2015) and their slowdown (2012–2015) in emissions of Korea. This study uses an extended index decomposition analysis model that better fits Korea’s emission trends of the last 25 years by encompassing 19 energy end-use sectors (18 economic sectors and a household sector) and three energy types. The results show that emission increases in the long term (1990–2015) come from economic growth and population growth. However, improvements in energy intensity, carbon intensity, and economic structure offset large portions of CO2 emissions. The recent slowdown (2012–2015) mainly resulted from a decline in energy intensity and carbon intensity in the economic sectors. Among the different energy types, electricity has played a significant role in decreasing emissions because industries have reduced the consumption of electricity per output and the source of electricity generation has shifted to cleaner energies. These results imply that the Korean government should support strategies that reduce energy intensity and carbon intensity in the future to reduce CO2 emissions and maintain sustainable development.
Purpose -This study aims to combine information about sea level rise (SLR), the probability distribution of storm surge, a flood damage function and the value of property by elevation along the coast of selected cities to measure expected flood damage. The selected six cities all have nearby long-term tidal stations that can be used to estimate the probability distribution of floods. The model is calibrated to each city. The study then compares the cost of building higher seawalls today along the coast versus the benefit of each wall (the reduction in expected flood damage).Design/methodology/approach -The combination of coastal storms and SLR has led to extensive flood damage across American cities. This study creates a simple generic model that evaluates whether seawalls would be effective at addressing this flooding problem. The paper develops an approach that readily measures the expected flood benefits and costs of alternative coastal seawalls. The approach takes account of near term SLR and the probability distribution of storm surge. The model finds seawalls are effective only in cities where many buildings are in the 25-year flood plain.Findings -Cities with many buildings built on land below 2 m in elevation (the 25-year flood plain) have high expected flood damage from storms and SLR. Cities which already have many buildings in this flood plain would benefit from seawalls. Assuming seawalls are built above the high tide line, the optimal wall height that maximizes net benefits is between 0.9 to 1.2 m. These relatively low seawalls block 70%-83% of expected flood damage in these cities. Fair flood insurance is the least cost strategy for handling the remaining damages that overtop the optimal seawalls.Research limitations/implications -The analysis evaluates whether or not to build a seawall the length of each city at high tide lines. However, the analysis also finds several long stretches of coast in two cities where a wall is not warranted because there are few vulnerable buildings. Future analyses should consider seawalls in more spatially detailed sections of each city. Each section could then be analyzed independently. Whether or not more complex hydrodynamic models are needed to evaluate coastal resilience planning should also be explored. Alternative solutions such as planned retreat and nature-based solutions should be compared with seawalls in future studies as well.Practical implications -Cities should be careful to avoid development in the 25-year flood plain because of high expected flood damage. Cities that have low elevation areas subject to frequent flooding should
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.