A uniform deposition of the suspended particles in an evaporating droplet is necessary in many research fields. Such deposition is difficult to achieve, because the coffee-ring effect dominates the internal flow in a droplet. The present study adopts a biocompatible, surfactant-like polymer (Polyethylene glycol, PEG) to break the coffee-ring effect and obtain a relatively uniform deposition of the microparticles with yielding multi-ring pattern over a droplet area. Movements of the suspended particles in evaporating droplets and deposition patterns of them on a glass substrate were analyzed with microscopic images and video files. The PEG in the droplets successfully altered the coffee-ring effect because of the surface tension variation, which induced a centripetal Marangoni flow. Balancing these two phenomena apparently generated the Marangoni vortex. For PEG solution droplets, the pinning–depinning process during evaporation was periodically repeated and multiple rings were regularly formed. In conclusion, adding a surfactant-like viscous polymer in a droplet could provide a uniform coating of suspended particles, such as cells and various biomaterials, which would be essentially required for droplet assays of biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.