Detection of small targets in aerial images is still a difficult problem due to the low resolution and background-like targets. With the recent development of object detection technology, efficient and high-performance detector techniques have been developed. Among them, the YOLO series is a representative method of object detection that is light and has good performance. In this paper, we propose a method to improve the performance of small target detection in aerial images by modifying YOLOv5. The backbone is was modified by applying the first efficient channel attention module, and the channel attention pyramid method was proposed. We propose an efficient channel attention pyramid YOLO (ECAP-YOLO). Second, in order to optimize the detection of small objects, we eliminated the module for detecting large objects and added a detect layer to find smaller objects, reducing the computing power used for detecting small targets and improving the detection rate. Finally, we use transposed convolution instead of upsampling. Comparing the method proposed in this paper to the original YOLOv5, the performance improvement for the mAP was 6.9% when using the VEDAI dataset, 5.4% when detecting small cars in the xView dataset, 2.7% when detecting small vehicle and small ship classes from the DOTA dataset, and approximately 2.4% when finding small cars in the Arirang dataset.
Semantic 3D mapping is one of the most important fields in robotics, and has been used in many applications, such as robot navigation, surveillance, and virtual reality. In general, semantic 3D mapping is mainly composed of 3D reconstruction and semantic segmentation. As these technologies evolve, there has been great progress in semantic 3D mapping in recent years. Furthermore, the number of robotic applications requiring semantic information in 3D mapping to perform high-level tasks has increased, and many studies on semantic 3D mapping have been published. Existing methods use a camera for both 3D reconstruction and semantic segmentation. However, this is not suitable for large-scale environments and has the disadvantage of high computational complexity. To address this problem, we propose a multimodal sensor-based semantic 3D mapping system using a 3D Lidar combined with a camera. In this study, we build a 3D map by estimating odometry based on a global positioning system (GPS) and an inertial measurement unit (IMU), and use the latest 2D convolutional neural network (CNN) for semantic segmentation. To build a semantic 3D map, we integrate the 3D map with semantic information by using coordinate transformation and Bayes' update scheme. In order to improve the semantic 3D map, we propose a 3D refinement process to correct wrongly segmented voxels and remove traces of moving vehicles in the 3D map. Through experiments on challenging sequences, we demonstrate that our method outperforms state-of-the-art methods in terms of accuracy and intersection over union (IoU). Thus, our method can be used for various applications that require semantic information in 3D map.
Semantic 3D maps are required for various applications including robot navigation and surveying, and their importance has significantly increased. Generally, existing studies on semantic mapping were camera-based approaches that could not be operated in large-scale environments owing to their computational burden. Recently, a method of combining a 3D Lidar with a camera was introduced to address this problem, and a 3D Lidar and a camera were also utilized for semantic 3D mapping. In this study, our algorithm consists of semantic mapping and map refinement. In the semantic mapping, a GPS and an IMU are integrated to estimate the odometry of the system, and subsequently, the point clouds measured from a 3D Lidar are registered by using this information. Furthermore, we use the latest CNN-based semantic segmentation to obtain semantic information on the surrounding environment. To integrate the point cloud with semantic information, we developed incremental semantic labeling including coordinate alignment, error minimization, and semantic information fusion. Additionally, to improve the quality of the generated semantic map, the map refinement is processed in a batch. It enhances the spatial distribution of labels and removes traces produced by moving vehicles effectively. We conduct experiments on challenging sequences to demonstrate that our algorithm outperforms state-of-the-art methods in terms of accuracy and intersection over union.
The Yellow Sea is one of the most productive continental shelves in the world. This large marine ecosystem is experiencing an epochal change in water temperature, stratification, nutrients, and subsequently in ecological diversity. Research-oriented monitoring of these changes requires a sustainable, multidisciplinary approach. For this purpose, the Korea Institute of Ocean Science and Technology (KIOST) constructed the Socheongcho Ocean Research Station (S-ORS), a steel-framed tower-type platform, in the central Yellow Sea about 50 km off the western coast of the Korean Peninsula. This station is equipped with about forty sensors for interdisciplinary oceanographic observations. Since its construction in 2014, this station has continuously conducted scientific observations and provided qualified time series: physical oceanographic variables such as temperature, salinity, sea level pressure, wave, and current; biogeochemical variables such as chlorophyll-a, photosynthetically active radiation, and total suspended particles; atmospheric variables including air temperature, wind, greenhouse gasses, and air particles including black carbon. A prime advantage is that this platform has provided stable facilities including a wet lab where scientists can stay and experiment on in situ water samples. Several studies are in process to understand and characterize the evolution of environmental signals, including airsea interaction, marine ecosystems, wave detection, and total suspended particles in the central Yellow Sea. This paper provides an overview of the research facilities, maintenance, observations, scientific achievements, and next steps of the S-ORS with highlighting this station as an open lab for interdisciplinary collaboration on multiscale process studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.