AbstractÐEfficient and effective buffering of disk blocks in main memory is critical for better file system performance due to a wide speed gap between main memory and hard disks. In such a buffering system, one of the most important design decisions is the block replacement policy that determines which disk block to replace when the buffer is full. In this paper, we show that there exists a spectrum of block replacement policies that subsumes the two seemingly unrelated and independent Least Recently Used (LRU) and Least Frequently Used (LFU) policies. The spectrum is called the LRFU (Least Recently/Frequently Used) policy and is formed by how much more weight we give to the recent history than to the older history. We also show that there is a spectrum of implementations of the LRFU that again subsumes the LRU and LFU implementations. This spectrum is again dictated by how much weight is given to recent and older histories and the time complexity of the implementations lies between O(1) (the time complexity of LRU) and ylog P n (the time complexity of LFU), where n is the number of blocks in the buffer. Experimental results from trace-driven simulations show that the performance of the LRFU is at least competitive with that of previously known policies for the workloads we considered.
We introduce our method and system for face recognition using multiple pose-aware deep learning models. In our representation, a face image is processed by several posespecific deep convolutional neural network (CNN) models to generate multiple pose-specific features. 3D rendering is used to generate multiple face poses from the input image. Sensitivity of the recognition system to pose variations is reduced since we use an ensemble of pose-specific CNN features. The paper presents extensive experimental results on the effect of landmark detection, CNN layer selection and pose model selection on the performance of the recognition pipeline. Our novel representation achieves better results than the state-of-the-art on IARPA's CS2 and NIST's IJB-A in both verification and identification (i.e. search) tasks.
Human motion prediction from motion capture data is a classical problem in the computer vision, and conventional methods take the holistic human body as input. These methods ignore the fact that, in various human activities, different body components (limbs and the torso) have distinctive characteristics in terms of the moving pattern. In this paper, we argue local representations on different body components should be learned separately and, based on such idea, propose a network, Skeleton Network (SkelNet), for long-term human motion prediction. Specifically, at each time-step, local structure representations of input (human body) are obtained via Skel-Net's branches of component-specific layers, then the shared layer uses local spatial representations to predict the future human pose. Our SkelNet is the first to use local structure representations for predicting the human motion. Then, for short-term human motion prediction, we propose the second network, named as Skeleton Temporal Network (Skel-TNet). Skel-TNet consists of three components: SkelNet and a Recurrent Neural Network, they have advantages in learning spatial and temporal dependencies for predicting human motion, respectively; a feed-forward network that outputs the final estimation. Our methods achieve promising results on the Human3.6M dataset and the CMU motion capture dataset.
We propose a novel 3D face recognition algorithm using a deep convolutional neural network (DCNN) and a 3D augmentation technique. The performance of 2D face recognition algorithms has significantly increased by leveraging the representational power of deep neural networks and the use of large-scale labeled training data. As opposed to 2D face recognition, training discriminative deep features for 3D face recognition is very difficult due to the lack of large-scale 3D face datasets. In this paper, we show that transfer learning from a CNN trained on 2D face images can effectively work for 3D face recognition by finetuning the CNN with a relatively small number of 3D facial scans. We also propose a 3D face augmentation technique which synthesizes a number of different facial expressions from a single 3D face scan. Our proposed method shows excellent recognition results on Bosphorus, BU-3DFE, and 3D-TEC datasets, without using hand-crafted features. The 3D identification using our deep features also scales well for large databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.