Spatiotemporal control of gene expression or labeling is a valuable strategy for identifying functions of genes within complex neural circuits. Here, we develop a highly light-sensitive and efficient photoactivatable Flp recombinase (PA-Flp) that is suitable for genetic manipulation in vivo. The highly light-sensitive property of PA-Flp is ideal for activation in deep mouse brain regions by illumination with a noninvasive light-emitting diode. In addition, PA-Flp can be extended to the Cre-lox system through a viral vector as Flp-dependent Cre expression platform, thereby activating both Flp and Cre. Finally, we demonstrate that PA-Flp–dependent, Cre-mediated Cav3.1 silencing in the medial septum increases object-exploration behavior in mice. Thus, PA-Flp is a noninvasive, highly efficient, and easy-to-use optogenetic module that offers a side-effect-free and expandable genetic manipulation tool for neuroscience research.
Activation of Fas (CD95) is observed in various neurological disorders and can lead to both apoptosis and prosurvival outputs, yet how Fas signaling operates dynamically in the hippocampus is poorly understood. The optogenetic dissection of a signaling network can yield molecular-level explanations for cellular responses or fates, including the signaling dysfunctions seen in numerous diseases. Here, we developed an optogenetically activatable Fas that works in a physiologically plausible manner. Fas activation in immature neurons of the dentate gyrus triggered mammalian target of rapamycin (mTOR) activation and subsequent brain-derived neurotrophic factor secretion. Phosphorylation of extracellular signal–regulated kinase (Erk) in neural stem cells was induced under prolonged Fas activation. Repetitive activation of this signaling network yielded proliferation of neural stem cells and a transient increase in spatial working memory in mice. Our results demonstrate a novel Fas signaling network in the dentate gyrus and illuminate its consequences for adult neurogenesis and memory enhancement.
The PFC is thought to be the region where remote memory is recalled. However, the neurotrophic receptors that underlie the remote memory remain largely unknown. Here, we benefited from auto-assembly split Cre to accomplish the neural projection-specific recombinase activity without spontaneous leakage. Deletion of tropomyosin receptor kinase B (TrkB) in neurons projecting from the medial entorhinal cortex to the mPFC displayed reduced remote memory recall from the male mice, but the recent recall was intact. We found that the TrkB deletion attenuates the participation of mPFC cells in the remote fear memory recall. The disruption of remote recall was attributed to reduced reactivation of cells in the mPFC. Notably, TrkB deletion seriously inhibited experience-dependent maturation of oligodendroglia in the PFC, resulting in defects in remote recall that were rescued by clemastine administration. Together, our data suggest that TrkB in intercortical circuits functions in remote memory consolidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.