Neuronal activity-induced gene expression modulates the function and plasticity of the nervous system. It is unknown whether and to what extent neuronal activity may trigger changes in chromatin accessibility, a major mode of epigenetic regulation of gene expression. Here we compared chromatin accessibility landscapes of adult mouse dentate granule neurons in vivo before and after synchronous neuronal activation using ATAC-seq. We found widespread, genome-wide changes one hour after activation, with enrichment of gained-open sites at active enhancer regions and at binding sites for AP1 complex components, including cFos. Some changes remain stable for at least twenty-four hours. Functional analysis further implicates a critical role of cFos in initiating, but not maintaining, neuronal activity-induced chromatin opening. Our results reveal dynamic changes of chromatin accessibility in the adult mammalian brain and suggest an epigenetic mechanism by which transient neuronal activation leads to dynamic changes in gene expression via modifying chromatin accessibility.
Spontaneous pain and function-associated pain are prevalent symptoms of multiple acute and chronic muscle pathologies. We established mouse models for evaluating spontaneous pain and bite-evoked pain from masseter muscle, and determined the roles of TRPV1 and the contribution of TRPV1- or NK1-dependent nociceptive pathways. Masseter muscle inflammation increased mouse grimace scale (MGS) scores and face wiping behavior which were attenuated by pharmacological or genetic inhibition of TRPV1. Masseter inflammation led to a significant reduction in bite force. Inhibition of TRPV1 only marginally relieved the inflammation-induced reduction of bite force. These results suggest differential extent of contribution of TRPV1 to the two types of muscle pain. However, chemical ablation of TRPV1-expressing nociceptors or chemogenetic silencing of TRPV1-lineage nerve terminals in masseter muscle attenuated inflammation-induced changes in both MGS scores and bite force. Furthermore, ablation of neurons expressing neurokinin 1 (NK1) receptor in trigeminal subnucleus caudalis also prevented both types of muscle pain. Our results suggest that TRPV1 differentially contribute to spontaneous pain and bite-evoked muscle pain, but TRPV1-expressing afferents and NK1-expressing second order neurons commonly mediate both types of muscle pain. Therefore, manipulation of the nociceptive circuit may provide a novel approach for management of acute or chronic craniofacial muscle pain.
Craniofacial muscle pain, such as spontaneous pain and bite-evoked pain, are major symptoms in patients with temporomandibular disorders and infection. However, the underlying mechanisms of muscle pain, especially mechanisms of highly prevalent spontaneous pain, are poorly understood. Recently, we reported that transient receptor potential vanilloid 1 (TRPV1) contributes to spontaneous pain but only marginally contributes to bite-evoked pain during masseter inflammation. Here, we investigated the role of transient receptor potential ankyrin 1 (TRPA1) in spontaneous and bite-evoked pain during masseter inflammation, and dissected the relative contributions of TRPA1 and TRPV1. Masseter inflammation increased mouse grimace scale (MGS) scores and face wiping behaviors. Pharmacological or genetic inhibition of TRPA1 significantly attenuated MGS but not face wiping behaviors. MGS scores were also attenuated by scavenging putative endogenous ligands for TRPV1 or TRPA1. Simultaneous inhibition of TRPA1 by AP18 and TRPV1 by AMG9810 in masseter muscle resulted in robust inhibition of both MGS and face wiping behaviors. Administration of AP18 or AMG9810 to masseter muscle induced conditioned place preference (CPP). The extent of CPP following simultaneous administration of AP18 and AMG9810 was greater than that induced by the individual antagonists. In contrast, inflammation-induced reduction of bite force was not affected by the inhibition of TRPA1 alone or in combination with TRPV1. These results suggest that simultaneous inhibition of TRPV1 and TRPA1 produces additive relief of spontaneous pain, but does not ameliorate bite-evoked pain during masseter inflammation. Our results provide further evidence that distinct mechanisms underlie spontaneous and bite-evoked pain from inflamed masseter muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.