Photoplethysmography (PPG) is an easy and convenient method by which to measure heart rate (HR). However, PPG signals that optically measure volumetric changes in blood are not robust to motion artifacts. In this paper, we develop a PPG measuring system based on multi-channel sensors with multiple wavelengths and propose a motion artifact reduction algorithm using independent component analysis (ICA). We also propose a truncated singular value decomposition for 12-channel PPG signals, which contain direction and depth information measured using the developed multi-channel PPG measurement system. The performance of the proposed method is evaluated against the R-peaks of an electrocardiogram in terms of sensitivity (Se), positive predictive value (PPV), and failed detection rate (FDR). The experimental results show that Se, PPV, and FDR were 99%, 99.55%, and 0.45% for walking, 96.28%, 99.24%, and 0.77% for fast walking, and 82.49%, 99.83%, and 0.17% for running, respectively. The evaluation shows that the proposed method is effective in reducing errors in HR estimation from PPG signals with motion artifacts in intensive motion situations such as fast walking and running.
In a mass casualty incident, the factors that determine the survival rate of injured patients are diverse, but one of the key factors is the time for triage. Additionally, the main factor that determines the time of triage is the number of medical personnel. However, when relying on a small number of medical personnel, the ability to increase survivability is limited. Therefore, developing a classification model for survival prediction that can quickly and precisely triage via wearable devices without medical personnel is important. In this study, we designed a consciousness index to substitute the factor by manpower and improved the classification accuracy by applying a machine learning algorithm. First, logistic regression analysis using vital signs and a consciousness index capable of remote monitoring through wearable devices confirmed the high efficiency of the consciousness index. We then developed a classification model with high accuracy which corresponds to existing injury severity scoring systems through the machine learning algorithms. We extracted 460,865 cases which met our criteria for developing the survival prediction from the national sample project in the national trauma databank which contains 408,316 cases of blunt injury and 52,549 cases of penetrating injury. Among the dataset, 17,918 (3.9%) cases died while the other survived. The AUCs with 95% confidence intervals (CIs) for the different models with the proposed simplified consciousness score as follows: RTS (as baseline), 0.78 (95% CI = 0.775 to 0.785); logistic regression, 0.87 (95% CI = 0.862 to 0.870); random forest, 0.87 (95% CI = 0.862 to 0.872); deep neural network, 0.89 (95% CI = 0.882 to 0.890). As a result, we confirmed the possibility of remote triage using a wearable device. It is expected that the time required for triage can be effectively reduced by using the developed classification model of survival prediction.
Musical cueing has been widely utilised in post-stroke motor rehabilitation; however, the kinematic evidence on the effects of musical cueing is sparse. Further, the element-specific effects of musical cueing on upper-limb movements have rarely been investigated. This study aimed to kinematically quantify the effects of no auditory, rhythmic auditory, and melodic auditory cueing on shoulder abduction, holding, and adduction in patients who had experienced hemiparetic stroke. Kinematic data were obtained using inertial measurement units embedded in wearable bands. During the holding phase, melodic auditory cueing significantly increased the minimum Euler angle and decreased the range of motion compared with the other types of cueing. Further, the root mean square error in the angle measurements was significantly smaller and the duration of movement execution was significantly shorter during the holding phase when melodic auditory cueing was provided than when the other types of cueing were used. These findings indicated the important role of melodic auditory cueing for enhancing movement positioning, variability, and endurance. This study provides the first kinematic evidence on the effects of melodic auditory cueing on kinematic enhancement, thus suggesting the potential use of pitch-related elements in psychomotor rehabilitation.
Internet gaming disorder (IGD) is characterized by a loss of control over gaming and a decline in psychosocial functioning derived from excessive gameplay. We hypothesized that individuals with IGD would show different autonomic nervous system (ANS) responses to the games than those without IGD. In this study, heart rate variability (HRV) was assessed in 21 young males with IGD and 27 healthy controls while playing their favorite Internet game. The subjects could examine the game logs to identify the most and least concentrated periods of the game. The changes in HRV during specific 5-min periods of the game (first, last, and high- and low-attention) were compared between groups via a repeated measures analysis of variance. Significant predictors of HRV patterns during gameplay were determined from stepwise multiple linear regression analyses. Subjects with IGD showed a significant difference from controls in the patterns of vagally mediated HRV, such that they showed significant reductions in high-frequency HRV, particularly during the periods of high attention and the last 5 min, compared with baseline values. A regression analysis showed that the IGD symptom scale score was a significant predictor of this reduction. These results suggest that an altered HRV response to specific gaming situations is related to addictive patterns of gaming and may reflect the diminished executive control of individuals with IGD while playing Internet games.
Inter-joint coordination and gait variability in knee osteoarthritis (KOA) has not been well investigated. Hip-knee cyclograms can visualize the relationship between the hip and knee joint simultaneously. The aim of this study was to elucidate differences in inter-joint coordination and gait variability with respect to KOA severity using hip-knee cyclograms. Fifty participants with KOA (early KOA, n = 20; advanced KOA, n = 30) and 26 participants (≥ 50 years) without KOA were recruited. We analyzed inter-joint coordination by hip-knee cyclogram parameters including range of motion (RoM), center of mass (CoM), perimeter, and area. Gait variability was assessed by the coefficient of variance (CV) of hip-knee cyclogram parameters. Knee RoM was significantly reduced and total perimeter tended to be decreased with KOA progression. KOA patients (both early and advanced) had reduced stance phase perimeter, swing phase area, and total area than controls. Reduced knee CoM and swing phase perimeter were observed only in advanced KOA. Both KOA groups had a greater CV for CoM, knee RoM, perimeter (stance phase, swing phase and total) and swing phase area than the controls. Increased CV of hip RoM was only observed in advanced KOA. These results demonstrate that hip-knee cyclograms can provide insights into KOA patient gait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.