Inspired by the great success of graphite in lithium‐ion batteries, anode materials that undergo an intercalation mechanism are considered to provide stable and reversible electrochemical sodium‐ion storage for sodium‐ion battery (SIB) applications. Though MoS2 is a promising 2D material for SIBs, it suffers from deformation of its layered structure during repeated intercalation of Na+, resulting in undesirable electrochemical behaviors. In this study, vertically oriented MoS2 on nitrogenous reduced graphene oxide sheets (VO‐MoS2/N‐RGO) is presented with designed spatial geometries, including sheet density and height, which can deliver a remarkably high reversible capacity of 255 mA h g−1 at a current density of 0.2 A g−1 and 245 mA h g−1 at a current density of 1 A g−1, with a total fluctuation of 5.35% over 1300 cycles. These results are superior to those obtained with well‐developed hard carbon structures. Furthermore, a SIB full cell composed of the optimized VO‐MoS2/N‐RGO anode and a Na2V3(PO4)3 cathode reaches a specific capacity of 262 mA h g−1 (based on the anode mass) during 50 cycles, with an operated voltage range of 2.4 V, demonstrating the potentially rewarding SIB performance, which is useful for further battery development.
A superconducting transition temperature (Tc) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced Tc from its bulk value of 8 K. There are two main views about the origin of the Tc enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate Tc of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum Tc, which in turn reveals the need for interfacial effects to achieve the highest Tc in one monolayer FeSe on SrTiO3.
2D multiferroics with combined ferroic orders have gained attention owing to their novel functionality and underlying science. Intrinsic ferroelastic–ferroelectric multiferroicity in single‐crystalline van der Waals rhenium dichalcogenides, whose symmetries are broken by the Peierls distortion and layer‐stacking order, is demonstrated. Ferroelastic switching of the domain orientation and accompanying anisotropic properties is achieved with 1% uniaxial strain using the polymer encapsulation method. Based on the electron localization function and bond dissociation energy of the Re–Re bonds, the change in bond configuration during the evolution of the domain wall and the preferred switching between the two specific orientation states are explained. Furthermore, the ferroelastic switching of ferroelectric polarization is confirmed using the photovoltaic effect. The study provides insights into the reversible bond‐switching process and potential applications based on 2D multiferroicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.