T cell‐derived small extracellular vesicles (sEVs) exhibit anti‐cancer effects. However, their anti‐cancer potential should be reinforced to enhance clinical applicability. Herein, we generated interleukin‐2‐tethered sEVs (IL2‐sEVs) from engineered Jurkat T cells expressing IL2 at the plasma membrane via a flexible linker to induce an autocrine effect. IL2‐sEVs increased the anti‐cancer ability of CD8+ T cells without affecting regulatory T (Treg) cells and down‐regulated cellular and exosomal PD‐L1 expression in melanoma cells, causing their increased sensitivity to CD8+ T cell‐mediated cytotoxicity. Its effect on CD8+ T and melanoma cells was mediated by several IL2‐sEV‐resident microRNAs (miRNAs), whose expressions were upregulated by the autocrine effects of IL2. Among the miRNAs, miR‐181a‐3p and miR‐223‐3p notably reduced the PD‐L1 protein levels in melanoma cells. Interestingly, miR‐181a‐3p increased the activity of CD8+ T cells while suppressing Treg cell activity. IL2‐sEVs inhibited tumour progression in melanoma‐bearing immunocompetent mice, but not in immunodeficient mice. The combination of IL2‐sEVs and existing anti‐cancer drugs significantly improved anti‐cancer efficacy by decreasing PD‐L1 expression in vivo. Thus, IL2‐sEVs are potential cancer immunotherapeutic agents that regulate both immune and cancer cells by reprogramming miRNA levels.
Background Patients with cancer undergoing chemotherapy experience cachexia with anorexia, body weight loss, and the depletion of skeletal muscles and adipose tissues. Effective treatment strategies for chemotherapy-induced cachexia are scarce. The growth differentiation factor 15 (GDF15)/GDNF family receptor alpha-like (GFRAL)/rearranged during transfection (RET) axis is a critical signalling pathway in chemotherapy-induced cachexia. In this study, we developed a fully human GFRAL antagonist antibody and investigated whether it inhibits the GDF15/GFRAL/RET axis, thereby alleviating chemotherapy-induced cachexia in tumour-bearing mice. Methods Anti-GFRAL antibodies were selected via biopanning, using a human combinatorial antibody phage library. The potent GFRAL antagonist antibody A11 was selected via a reporter cell assay and its inhibitory activity of GDF15-induced signalling was evaluated using western blotting. To investigate the in vivo function of A11, a tumour-bearing mouse model was established by inoculating 8-week-old male C57BL/6 mice with B16F10 cells (n = 10-16 mice per group). A11 was administered subcutaneously (10 mg/kg) 1 day before intraperitoneal treatment with cisplatin (10 mg/kg). Animals were assessed for changes in food intake, body weight, and tumour volume. Plasma and key metabolic tissues such as skeletal muscles and adipose tissues were collected for protein and mRNA expression analysis. Results A11 reduced serum response element-luciferase reporter activity up to 74% (P < 0.005) in a dose-dependent manner and blocked RET phosphorylation up to 87% (P = 0.0593), AKT phosphorylation up to 28% (P = 0.0593) and extracellular signal regulatory kinase phosphorylation up to 75% (P = 0.0636). A11 inhibited the action of cisplatin-induced GDF15 on the brainstem and decreased GFRAL-positive neuron population expressing c-Fos in the area postrema and nucleus of the solitary tract by 62% in vivo (P < 0.05). In a melanoma mouse model treated with cisplatin, A11 recovered anorexia by 21% (P < 0.05) and tumour-free body weight loss by 13% (P < 0.05). A11 significantly improved the cisplatin-induced loss of skeletal muscles (quadriceps: 21%, gastrocnemius: 9%, soleus: 13%, P < 0.05) and adipose tissues (epididymal white adipose tissue: 37%, inguinal white adipose tissue: 51%, P < 0.05). Conclusions Our study suggests that GFRAL antagonist antibody may alleviate chemotherapy-induced cachexia, providing a novel therapeutic approach for patients with cancer experiencing chemotherapy-induced cachexia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.