In spatial data with complexity, different clusters can be very contiguous, and the density of each cluster can be arbitrary and uneven. In addition, background noise that does not belong to any clusters in the data, or chain noise that connects multiple clusters may be included. This makes it difficult to separate clusters in contact with adjacent clusters, so a new approach is required to solve the nonlinear shape, irregular density, and touching problems of adjacent clusters that are common in complex spatial data clustering, as well as to improve robustness against various types of noise in spatial clusters. Accordingly, we proposed an efficient graph-based spatial clustering technique that employs Delaunay triangulation and the mechanism of DBSCAN (density-based spatial clustering of applications with noise). In the performance evaluation using simulated synthetic data as well as real 3D point clouds, the proposed method maintained better clustering and separability of neighboring clusters compared to other clustering techniques, and is expected to be of practical use in the field of spatial data mining.
An essential component for the autonomous flight or air-to-ground surveillance of a UAV is an object detection device. It must possess a high detection accuracy and requires real-time data processing to be employed for various tasks such as search and rescue, object tracking and disaster analysis. With the recent advancements in multimodal data-based object detection architectures, autonomous driving technology has significantly improved, and the latest algorithm has achieved an average precision of up to 96%. However, these remarkable advances may be unsuitable for the image processing of UAV aerial data directly onboard for object detection because of the following major problems: (1) Objects in aerial views generally have a smaller size than in an image and they are uneven and sparsely distributed throughout an image; (2) Objects are exposed to various environmental changes, such as occlusion and background interference; and (3) The payload weight of a UAV is limited. Thus, we propose employing a new real-time onboard object detection architecture, an RGB aerial image and a point cloud data (PCD) depth map image network (RGDiNet). A faster region-based convolutional neural network was used as the baseline detection network and an RGD, an integration of the RGB aerial image and the depth map reconstructed by the light detection and ranging PCD, was utilized as an input for computational efficiency. Performance tests and evaluation of the proposed RGDiNet were conducted under various operating conditions using hand-labeled aerial datasets. Consequently, it was shown that the proposed method has a superior performance for the detection of vehicles and pedestrians than conventional vision-based methods.
Recently, as the demand for technological advancement in the field of autonomous driving and smart video surveillance is gradually increasing, considerable progress in multi-object tracking using deep neural networks has been achieved, and its application field is also expanding. However, various problems have not been fully addressed owing to the inherent limitations in video cameras, such as the tracking of objects in an occluded environment. Therefore, in this study, we propose a density-based object tracking technique redesigned based on DBSCAN, which has high robustness against noise and is excellent for nonlinear clustering. Moreover, it improves the noise vulnerability inherent to multi-object tracking, reduces the difficulty of trajectory separation, and facilitates real-time processing through simple structural expansion. Through performance test evaluation, it was confirmed that by using the proposed technique, several performance indices were improved compared to the existing tracking technique. In particular, when added as a post processor to the existing tracker, the tracking performance owing to noise suppression was considerably improved by more than 10%. Thus, the proposed method can be applied in industrial environments, such as real pedestrian analysis and surveillance security systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.