Two-dimensional (2D) molybdenum disulphide (MoS2) atomic layers have a strong potential to be used as 2D electronic sensor components. However, intrinsic synthesis challenges have made this task difficult. In addition, the detection mechanisms for gas molecules are not fully understood. Here, we report a high-performance gas sensor constructed using atomic-layered MoS2 synthesised by chemical vapour deposition (CVD). A highly sensitive and selective gas sensor based on the CVD-synthesised MoS2 was developed. In situ photoluminescence characterisation revealed the charge transfer mechanism between the gas molecules and MoS2, which was validated by theoretical calculations. First-principles density functional theory calculations indicated that NO2 and NH3 molecules have negative adsorption energies (i.e., the adsorption processes are exothermic). Thus, NO2 and NH3 molecules are likely to adsorb onto the surface of the MoS2. The in situ PL characterisation of the changes in the peaks corresponding to charged trions and neutral excitons via gas adsorption processes was used to elucidate the mechanisms of charge transfer between the MoS2 and the gas molecules.
Laser-induced graphene (LIG) is a platform material for numerous applications. Despite its ease in synthesis, LIG’s potential for use in some applications is limited by its robustness on substrates. Here, using a simple infiltration method, we develop LIG composites (LIGCs) with physical properties that are engineered on various substrate materials. The physical properties include surface properties such as superhydrophobicity and antibiofouling; the LIGCs are useful in antibacterial applications and Joule-heating applications and as resistive memory device substrates.
We report the production of a two-dimensional (2D) heterostructured gas sensor. The gas-sensing characteristics of exfoliated molybdenum disulfide (MoS2) connected to interdigitated metal electrodes were investigated. The MoS2 flake-based sensor detected a NO2 concentration as low as 1.2 ppm and exhibited excellent gas-sensing stability. Instead of metal electrodes, patterned graphene was used for charge collection in the MoS2-based sensing devices. An equation based on variable resistance terms was used to describe the sensing mechanism of the graphene/MoS2 device. Furthermore, the gas response characteristics of the heterostructured device on a flexible substrate were retained without serious performance degradation, even under mechanical deformation. This novel sensing structure based on a 2D heterostructure promises to provide a simple route to an essential sensing platform for wearable electronics.
Laser-induced graphene (LIG), a graphene structure synthesized by a one-step process through laser treatment of commercial polyimide (PI) film in an ambient atmosphere, has been shown to be a versatile material in applications ranging from energy storage to water treatment. However, the process as developed produces only a 2D product on the PI substrate. Here, a 3D LIG foam printing process is developed on the basis of laminated object manufacturing, a widely used additive-manufacturing technique. A subtractive laser-milling process to yield further refinements to the 3D structures is also developed and shown here. By combining both techniques, various 3D graphene objects are printed. The LIG foams show good electrical conductivity and mechanical strength, as well as viability in various energy storage and flexible electronic sensor applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.